Mathematical gauge theory with applications to the standard model of particle physics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hamilton, M. J. D. 1977- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2017]
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:DE-634
DE-898
DE-861
DE-863
DE-862
DE-523
DE-91
DE-19
DE-703
DE-20
DE-824
DE-739
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044702294
003 DE-604
005 20220411
007 cr|uuu---uuuuu
008 180108s2017 xx a||| o|||| 00||| eng d
020 |a 9783319684390  |c Online  |9 978-3-319-68439-0 
024 7 |a 10.1007/978-3-319-68439-0  |2 doi 
035 |a (ZDB-2-SMA)9783319684390 
035 |a (OCoLC)1018469823 
035 |a (DE-599)BVBBV044702294 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-188  |a DE-523  |a DE-703  |a DE-863  |a DE-20  |a DE-739  |a DE-634  |a DE-862  |a DE-824  |a DE-11 
082 0 |a 514.34  |2 23 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UO 4060  |0 (DE-625)146244:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Hamilton, M. J. D.  |d 1977-  |e Verfasser  |0 (DE-588)136002323  |4 aut 
245 1 0 |a Mathematical gauge theory  |b with applications to the standard model of particle physics  |c Mark J.D. Hamilton 
264 1 |a Cham, Switzerland  |b Springer  |c [2017] 
264 4 |c © 2017 
300 |a 1 Online-Ressource (xviii, 658 Seiten)  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Universitext  |x 0172-5939 
650 4 |a Mathematics 
650 4 |a Topological groups 
650 4 |a Lie groups 
650 4 |a Manifolds (Mathematics) 
650 4 |a Complex manifolds 
650 4 |a Physics 
650 4 |a Elementary particles (Physics) 
650 4 |a Quantum field theory 
650 4 |a Mathematics 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Elementary Particles, Quantum Field Theory 
650 4 |a Mathematical Methods in Physics 
650 4 |a Topological Groups, Lie Groups 
650 0 7 |a Eichtheorie  |0 (DE-588)4122125-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Eichtheorie  |0 (DE-588)4122125-4  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-3-319-68438-3 
856 4 0 |u https://doi.org/10.1007/978-3-319-68439-0  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2017 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030098969 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-863  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-862  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-523  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-68439-0  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-UBM_katkey 5541725
DE-BY-UBM_local_url Verlag
https://doi.org/10.1007/978-3-319-68439-0
_version_ 1823056412837675008
any_adam_object
author Hamilton, M. J. D. 1977-
author_GND (DE-588)136002323
author_facet Hamilton, M. J. D. 1977-
author_role aut
author_sort Hamilton, M. J. D. 1977-
author_variant m j d h mjd mjdh
building Verbundindex
bvnumber BV044702294
classification_rvk SK 950
UO 4060
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783319684390
(OCoLC)1018469823
(DE-599)BVBBV044702294
dewey-full 514.34
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.34
dewey-search 514.34
dewey-sort 3514.34
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
doi_str_mv 10.1007/978-3-319-68439-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03299nam a2200733 c 4500</leader><controlfield tag="001">BV044702294</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220411 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180108s2017 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319684390</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-68439-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-68439-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783319684390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1018469823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044702294</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4060</subfield><subfield code="0">(DE-625)146244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hamilton, M. J. D.</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136002323</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical gauge theory</subfield><subfield code="b">with applications to the standard model of particle physics</subfield><subfield code="c">Mark J.D. Hamilton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 658 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary particles (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-3-319-68438-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030098969</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-68439-0</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044702294
illustrated Illustrated
indexdate 2025-02-03T17:57:29Z
institution BVB
isbn 9783319684390
issn 0172-5939
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030098969
oclc_num 1018469823
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-11
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-188
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-11
physical 1 Online-Ressource (xviii, 658 Seiten) Illustrationen, Diagramme
psigel ZDB-2-SMA
ZDB-2-SMA_2017
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Springer
record_format marc
series2 Universitext
spellingShingle Hamilton, M. J. D. 1977-
Mathematical gauge theory with applications to the standard model of particle physics
Mathematics
Topological groups
Lie groups
Manifolds (Mathematics)
Complex manifolds
Physics
Elementary particles (Physics)
Quantum field theory
Manifolds and Cell Complexes (incl. Diff.Topology)
Elementary Particles, Quantum Field Theory
Mathematical Methods in Physics
Topological Groups, Lie Groups
Eichtheorie (DE-588)4122125-4 gnd
subject_GND (DE-588)4122125-4
title Mathematical gauge theory with applications to the standard model of particle physics
title_auth Mathematical gauge theory with applications to the standard model of particle physics
title_exact_search Mathematical gauge theory with applications to the standard model of particle physics
title_full Mathematical gauge theory with applications to the standard model of particle physics Mark J.D. Hamilton
title_fullStr Mathematical gauge theory with applications to the standard model of particle physics Mark J.D. Hamilton
title_full_unstemmed Mathematical gauge theory with applications to the standard model of particle physics Mark J.D. Hamilton
title_short Mathematical gauge theory
title_sort mathematical gauge theory with applications to the standard model of particle physics
title_sub with applications to the standard model of particle physics
topic Mathematics
Topological groups
Lie groups
Manifolds (Mathematics)
Complex manifolds
Physics
Elementary particles (Physics)
Quantum field theory
Manifolds and Cell Complexes (incl. Diff.Topology)
Elementary Particles, Quantum Field Theory
Mathematical Methods in Physics
Topological Groups, Lie Groups
Eichtheorie (DE-588)4122125-4 gnd
topic_facet Mathematics
Topological groups
Lie groups
Manifolds (Mathematics)
Complex manifolds
Physics
Elementary particles (Physics)
Quantum field theory
Manifolds and Cell Complexes (incl. Diff.Topology)
Elementary Particles, Quantum Field Theory
Mathematical Methods in Physics
Topological Groups, Lie Groups
Eichtheorie
url https://doi.org/10.1007/978-3-319-68439-0
work_keys_str_mv AT hamiltonmjd mathematicalgaugetheorywithapplicationstothestandardmodelofparticlephysics