Physical models of neural networks

This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Geszti, Tamás (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c1990
Schlagworte:
Online-Zugang:DE-92
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV044639139
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 171120s1990 xx a||| o|||| 00||| eng d
020 |a 9789814434492  |9 978-981-4434-49-2 
024 7 |a 10.1142/0925  |2 doi 
035 |a (ZDB-124-WOP)00005873 
035 |a (OCoLC)1005226799 
035 |a (DE-599)BVBBV044639139 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 612.82011  |2 22 
084 |a ST 130  |0 (DE-625)143588:  |2 rvk 
084 |a ST 150  |0 (DE-625)143594:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
100 1 |a Geszti, Tamás  |e Verfasser  |4 aut 
245 1 0 |a Physical models of neural networks  |c Tamás Geszti 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c1990 
300 |a viii, 143 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works 
650 4 |a Neural circuitry / Models 
650 4 |a Neural networks (Computer science) 
650 4 |a Neural computers 
650 0 7 |a Neuronales Netz  |0 (DE-588)4226127-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Modell  |0 (DE-588)4039798-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Nervennetz  |0 (DE-588)4041638-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Nervennetz  |0 (DE-588)4041638-0  |D s 
689 0 1 |a Modell  |0 (DE-588)4039798-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Neuronales Netz  |0 (DE-588)4226127-2  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789810200121 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9810200129 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030037111 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc  |l DE-92  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301221722226688
any_adam_object
author Geszti, Tamás
author_facet Geszti, Tamás
author_role aut
author_sort Geszti, Tamás
author_variant t g tg
building Verbundindex
bvnumber BV044639139
classification_rvk ST 130
ST 150
ST 300
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00005873
(OCoLC)1005226799
(DE-599)BVBBV044639139
dewey-full 612.82011
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 612 - Human physiology
dewey-raw 612.82011
dewey-search 612.82011
dewey-sort 3612.82011
dewey-tens 610 - Medicine and health
discipline Informatik
Medizin
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02978nam a2200553zc 4500</leader><controlfield tag="001">BV044639139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1990 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814434492</subfield><subfield code="9">978-981-4434-49-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/0925</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005226799</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044639139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612.82011</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 150</subfield><subfield code="0">(DE-625)143594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geszti, Tamás</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical models of neural networks</subfield><subfield code="c">Tamás Geszti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 143 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry / Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural computers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810200121</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810200129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030037111</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044639139
illustrated Illustrated
indexdate 2024-12-24T06:14:04Z
institution BVB
isbn 9789814434492
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030037111
oclc_num 1005226799
open_access_boolean
owner DE-92
owner_facet DE-92
physical viii, 143 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
publisher World Scientific Pub. Co.
record_format marc
spelling Geszti, Tamás Verfasser aut
Physical models of neural networks Tamás Geszti
Singapore World Scientific Pub. Co. c1990
viii, 143 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works
Neural circuitry / Models
Neural networks (Computer science)
Neural computers
Neuronales Netz (DE-588)4226127-2 gnd rswk-swf
Modell (DE-588)4039798-1 gnd rswk-swf
Nervennetz (DE-588)4041638-0 gnd rswk-swf
Nervennetz (DE-588)4041638-0 s
Modell (DE-588)4039798-1 s
1\p DE-604
Neuronales Netz (DE-588)4226127-2 s
2\p DE-604
Erscheint auch als Druck-Ausgabe 9789810200121
Erscheint auch als Druck-Ausgabe 9810200129
http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc Verlag URL des Erstveroeffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Geszti, Tamás
Physical models of neural networks
Neural circuitry / Models
Neural networks (Computer science)
Neural computers
Neuronales Netz (DE-588)4226127-2 gnd
Modell (DE-588)4039798-1 gnd
Nervennetz (DE-588)4041638-0 gnd
subject_GND (DE-588)4226127-2
(DE-588)4039798-1
(DE-588)4041638-0
title Physical models of neural networks
title_auth Physical models of neural networks
title_exact_search Physical models of neural networks
title_full Physical models of neural networks Tamás Geszti
title_fullStr Physical models of neural networks Tamás Geszti
title_full_unstemmed Physical models of neural networks Tamás Geszti
title_short Physical models of neural networks
title_sort physical models of neural networks
topic Neural circuitry / Models
Neural networks (Computer science)
Neural computers
Neuronales Netz (DE-588)4226127-2 gnd
Modell (DE-588)4039798-1 gnd
Nervennetz (DE-588)4041638-0 gnd
topic_facet Neural circuitry / Models
Neural networks (Computer science)
Neural computers
Neuronales Netz
Modell
Nervennetz
url http://www.worldscientific.com/worldscibooks/10.1142/0925#t=toc
work_keys_str_mv AT gesztitamas physicalmodelsofneuralnetworks