Virtual knots the state of the art
The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by L...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2013
|
Schriftenreihe: | K & E series on knots and everything
v. 51 |
Schlagworte: | |
Online-Zugang: | DE-92 URL des Erstveroeffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV044638893 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2013 xx a||| o|||| 00||| eng d | ||
020 | |a 9789814401135 |c electronic bk. |9 978-981-4401-13-5 | ||
024 | 7 | |a 10.1142/8438 |2 doi | |
035 | |a (ZDB-124-WOP)00002821 | ||
035 | |a (OCoLC)1012628472 | ||
035 | |a (DE-599)BVBBV044638893 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.2242 |2 22 | |
100 | 1 | |a Manturov, V. O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Virtual knots |b the state of the art |c Vassily Olegovich Manturov, Denis Petrovich Ilyutko |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2013 | |
300 | |a xxv, 521 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a K & E series on knots and everything |v v. 51 | |
520 | |a The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory | ||
650 | 4 | |a Knot theory | |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Iliutko, D. P. |d 1979– |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789814401128 (hbk.) |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030036865 | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc |l DE-92 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819301221550260224 |
---|---|
any_adam_object | |
author | Manturov, V. O. |
author_facet | Manturov, V. O. |
author_role | aut |
author_sort | Manturov, V. O. |
author_variant | v o m vo vom |
building | Verbundindex |
bvnumber | BV044638893 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00002821 (OCoLC)1012628472 (DE-599)BVBBV044638893 |
dewey-full | 514.2242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2242 |
dewey-search | 514.2242 |
dewey-sort | 3514.2242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03135nam a2200433zcb4500</leader><controlfield tag="001">BV044638893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2013 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814401135</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4401-13-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8438</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012628472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638893</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2242</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manturov, V. O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Virtual knots</subfield><subfield code="b">the state of the art</subfield><subfield code="c">Vassily Olegovich Manturov, Denis Petrovich Ilyutko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 521 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K & E series on knots and everything</subfield><subfield code="v">v. 51</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iliutko, D. P.</subfield><subfield code="d">1979–</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814401128 (hbk.)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036865</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638893 |
illustrated | Illustrated |
indexdate | 2024-12-24T06:14:03Z |
institution | BVB |
isbn | 9789814401135 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036865 |
oclc_num | 1012628472 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xxv, 521 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | K & E series on knots and everything |
spelling | Manturov, V. O. Verfasser aut Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko Singapore World Scientific Pub. Co. c2013 xxv, 521 p. ill txt rdacontent c rdamedia cr rdacarrier K & E series on knots and everything v. 51 The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory Knot theory Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Knoten Mathematik (DE-588)4164314-8 s 1\p DE-604 Iliutko, D. P. 1979– Sonstige oth Erscheint auch als Druck-Ausgabe 9789814401128 (hbk.) http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Manturov, V. O. Virtual knots the state of the art Knot theory Knoten Mathematik (DE-588)4164314-8 gnd |
subject_GND | (DE-588)4164314-8 |
title | Virtual knots the state of the art |
title_auth | Virtual knots the state of the art |
title_exact_search | Virtual knots the state of the art |
title_full | Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko |
title_fullStr | Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko |
title_full_unstemmed | Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko |
title_short | Virtual knots |
title_sort | virtual knots the state of the art |
title_sub | the state of the art |
topic | Knot theory Knoten Mathematik (DE-588)4164314-8 gnd |
topic_facet | Knot theory Knoten Mathematik |
url | http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc |
work_keys_str_mv | AT manturovvo virtualknotsthestateoftheart AT iliutkodp virtualknotsthestateoftheart |