Virtual knots the state of the art

The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Manturov, V. O. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2013
Schriftenreihe:K & E series on knots and everything v. 51
Schlagworte:
Online-Zugang:DE-92
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV044638893
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 171120s2013 xx a||| o|||| 00||| eng d
020 |a 9789814401135  |c electronic bk.  |9 978-981-4401-13-5 
024 7 |a 10.1142/8438  |2 doi 
035 |a (ZDB-124-WOP)00002821 
035 |a (OCoLC)1012628472 
035 |a (DE-599)BVBBV044638893 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 514.2242  |2 22 
100 1 |a Manturov, V. O.  |e Verfasser  |4 aut 
245 1 0 |a Virtual knots  |b the state of the art  |c Vassily Olegovich Manturov, Denis Petrovich Ilyutko 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c2013 
300 |a xxv, 521 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a K & E series on knots and everything  |v v. 51 
520 |a The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory 
650 4 |a Knot theory 
650 0 7 |a Knoten  |g Mathematik  |0 (DE-588)4164314-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Knoten  |g Mathematik  |0 (DE-588)4164314-8  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Iliutko, D. P.  |d 1979–  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789814401128 (hbk.) 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030036865 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc  |l DE-92  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301221550260224
any_adam_object
author Manturov, V. O.
author_facet Manturov, V. O.
author_role aut
author_sort Manturov, V. O.
author_variant v o m vo vom
building Verbundindex
bvnumber BV044638893
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00002821
(OCoLC)1012628472
(DE-599)BVBBV044638893
dewey-full 514.2242
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.2242
dewey-search 514.2242
dewey-sort 3514.2242
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03135nam a2200433zcb4500</leader><controlfield tag="001">BV044638893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2013 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814401135</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4401-13-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/8438</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00002821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012628472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638893</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2242</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manturov, V. O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Virtual knots</subfield><subfield code="b">the state of the art</subfield><subfield code="c">Vassily Olegovich Manturov, Denis Petrovich Ilyutko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxv, 521 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">K &amp; E series on knots and everything</subfield><subfield code="v">v. 51</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knot theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iliutko, D. P.</subfield><subfield code="d">1979–</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789814401128 (hbk.)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036865</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044638893
illustrated Illustrated
indexdate 2024-12-24T06:14:03Z
institution BVB
isbn 9789814401135
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030036865
oclc_num 1012628472
open_access_boolean
owner DE-92
owner_facet DE-92
physical xxv, 521 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher World Scientific Pub. Co.
record_format marc
series2 K & E series on knots and everything
spelling Manturov, V. O. Verfasser aut
Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko
Singapore World Scientific Pub. Co. c2013
xxv, 521 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
K & E series on knots and everything v. 51
The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V.O. Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory
Knot theory
Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf
Knoten Mathematik (DE-588)4164314-8 s
1\p DE-604
Iliutko, D. P. 1979– Sonstige oth
Erscheint auch als Druck-Ausgabe 9789814401128 (hbk.)
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc Verlag URL des Erstveroeffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Manturov, V. O.
Virtual knots the state of the art
Knot theory
Knoten Mathematik (DE-588)4164314-8 gnd
subject_GND (DE-588)4164314-8
title Virtual knots the state of the art
title_auth Virtual knots the state of the art
title_exact_search Virtual knots the state of the art
title_full Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko
title_fullStr Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko
title_full_unstemmed Virtual knots the state of the art Vassily Olegovich Manturov, Denis Petrovich Ilyutko
title_short Virtual knots
title_sort virtual knots the state of the art
title_sub the state of the art
topic Knot theory
Knoten Mathematik (DE-588)4164314-8 gnd
topic_facet Knot theory
Knoten Mathematik
url http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
work_keys_str_mv AT manturovvo virtualknotsthestateoftheart
AT iliutkodp virtualknotsthestateoftheart