Introduction to [lambda]-trees

"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chiswell, Ian 1948- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2001
Schlagworte:
Online-Zugang:FHN01
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV044636113
003 DE-604
005 20171220
007 cr|uuu---uuuuu
008 171120s2001 |||| o||u| ||||||eng d
020 |a 9789812810533  |9 978-981-281-053-3 
024 7 |a 10.1142/4495  |2 doi 
035 |a (ZDB-124-WOP)00004382 
035 |a (OCoLC)1012665567 
035 |a (DE-599)BVBBV044636113 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 511.52  |2 22 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
100 1 |a Chiswell, Ian  |d 1948-  |e Verfasser  |4 aut 
245 1 0 |a Introduction to [lambda]-trees  |c Ian Chiswell 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c2001 
300 |a x, 315 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a "The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology" 
610 2 7 |a USA  |b Navy  |0 (DE-588)14543-9  |2 gnd  |9 rswk-swf 
648 7 |a Geschichte 1900-1950  |2 gnd  |9 rswk-swf 
650 4 |a Lambda algebra 
650 4 |a Trees (Graph theory) 
650 4 |a Group theory 
650 0 7 |a Gruppentheorie  |0 (DE-588)4072157-7  |2 gnd  |9 rswk-swf 
689 0 0 |a USA  |b Navy  |0 (DE-588)14543-9  |D b 
689 0 1 |a Geschichte 1900-1950  |A z 
689 0 |5 DE-604 
689 1 0 |a Gruppentheorie  |0 (DE-588)4072157-7  |D s 
689 1 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789810243869 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9810243863 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
999 |a oai:aleph.bib-bvb.de:BVB01-030034085 
942 1 1 |c 355.009  |e 22/bsb  |f 0904  |g 73 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc  |l FHN01  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804178050060910592
any_adam_object
author Chiswell, Ian 1948-
author_facet Chiswell, Ian 1948-
author_role aut
author_sort Chiswell, Ian 1948-
author_variant i c ic
building Verbundindex
bvnumber BV044636113
classification_rvk SK 260
SK 340
SK 890
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00004382
(OCoLC)1012665567
(DE-599)BVBBV044636113
dewey-full 511.52
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511.52
dewey-search 511.52
dewey-sort 3511.52
dewey-tens 510 - Mathematics
discipline Mathematik
era Geschichte 1900-1950 gnd
era_facet Geschichte 1900-1950
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02755nmm a2200541zc 4500</leader><controlfield tag="001">BV044636113</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810533</subfield><subfield code="9">978-981-281-053-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012665567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636113</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.52</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiswell, Ian</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to [lambda]-trees</subfield><subfield code="c">Ian Chiswell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 315 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology"</subfield></datafield><datafield tag="610" ind1="2" ind2="7"><subfield code="a">USA</subfield><subfield code="b">Navy</subfield><subfield code="0">(DE-588)14543-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1900-1950</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lambda algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">USA</subfield><subfield code="b">Navy</subfield><subfield code="0">(DE-588)14543-9</subfield><subfield code="D">b</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1900-1950</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810243869</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810243863</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034085</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">355.009</subfield><subfield code="e">22/bsb</subfield><subfield code="f">0904</subfield><subfield code="g">73</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044636113
illustrated Not Illustrated
indexdate 2024-07-10T07:57:48Z
institution BVB
isbn 9789812810533
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030034085
oclc_num 1012665567
open_access_boolean
owner DE-92
owner_facet DE-92
physical x, 315 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher World Scientific Pub. Co.
record_format marc
spelling Chiswell, Ian 1948- Verfasser aut
Introduction to [lambda]-trees Ian Chiswell
Singapore World Scientific Pub. Co. c2001
x, 315 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology"
USA Navy (DE-588)14543-9 gnd rswk-swf
Geschichte 1900-1950 gnd rswk-swf
Lambda algebra
Trees (Graph theory)
Group theory
Gruppentheorie (DE-588)4072157-7 gnd rswk-swf
USA Navy (DE-588)14543-9 b
Geschichte 1900-1950 z
DE-604
Gruppentheorie (DE-588)4072157-7 s
Erscheint auch als Druck-Ausgabe 9789810243869
Erscheint auch als Druck-Ausgabe 9810243863
http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc Verlag URL des Erstveroeffentlichers Volltext
spellingShingle Chiswell, Ian 1948-
Introduction to [lambda]-trees
USA Navy (DE-588)14543-9 gnd
Lambda algebra
Trees (Graph theory)
Group theory
Gruppentheorie (DE-588)4072157-7 gnd
subject_GND (DE-588)14543-9
(DE-588)4072157-7
title Introduction to [lambda]-trees
title_auth Introduction to [lambda]-trees
title_exact_search Introduction to [lambda]-trees
title_full Introduction to [lambda]-trees Ian Chiswell
title_fullStr Introduction to [lambda]-trees Ian Chiswell
title_full_unstemmed Introduction to [lambda]-trees Ian Chiswell
title_short Introduction to [lambda]-trees
title_sort introduction to lambda trees
topic USA Navy (DE-588)14543-9 gnd
Lambda algebra
Trees (Graph theory)
Group theory
Gruppentheorie (DE-588)4072157-7 gnd
topic_facet USA Navy
Lambda algebra
Trees (Graph theory)
Group theory
Gruppentheorie
url http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc
work_keys_str_mv AT chiswellian introductiontolambdatrees