Introduction to [lambda]-trees
"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller spac...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636113 | ||
003 | DE-604 | ||
005 | 20171220 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 |||| o||u| ||||||eng d | ||
020 | |a 9789812810533 |9 978-981-281-053-3 | ||
024 | 7 | |a 10.1142/4495 |2 doi | |
035 | |a (ZDB-124-WOP)00004382 | ||
035 | |a (OCoLC)1012665567 | ||
035 | |a (DE-599)BVBBV044636113 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.52 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Chiswell, Ian |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to [lambda]-trees |c Ian Chiswell |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a x, 315 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a "The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology" | ||
610 | 2 | 7 | |a USA |b Navy |0 (DE-588)14543-9 |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte 1900-1950 |2 gnd |9 rswk-swf | |
650 | 4 | |a Lambda algebra | |
650 | 4 | |a Trees (Graph theory) | |
650 | 4 | |a Group theory | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a USA |b Navy |0 (DE-588)14543-9 |D b |
689 | 0 | 1 | |a Geschichte 1900-1950 |A z |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810243869 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810243863 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034085 | ||
942 | 1 | 1 | |c 355.009 |e 22/bsb |f 0904 |g 73 |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050060910592 |
---|---|
any_adam_object | |
author | Chiswell, Ian 1948- |
author_facet | Chiswell, Ian 1948- |
author_role | aut |
author_sort | Chiswell, Ian 1948- |
author_variant | i c ic |
building | Verbundindex |
bvnumber | BV044636113 |
classification_rvk | SK 260 SK 340 SK 890 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004382 (OCoLC)1012665567 (DE-599)BVBBV044636113 |
dewey-full | 511.52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.52 |
dewey-search | 511.52 |
dewey-sort | 3511.52 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
era | Geschichte 1900-1950 gnd |
era_facet | Geschichte 1900-1950 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02755nmm a2200541zc 4500</leader><controlfield tag="001">BV044636113</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810533</subfield><subfield code="9">978-981-281-053-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4495</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012665567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636113</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.52</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiswell, Ian</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to [lambda]-trees</subfield><subfield code="c">Ian Chiswell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 315 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology"</subfield></datafield><datafield tag="610" ind1="2" ind2="7"><subfield code="a">USA</subfield><subfield code="b">Navy</subfield><subfield code="0">(DE-588)14543-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1900-1950</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lambda algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">USA</subfield><subfield code="b">Navy</subfield><subfield code="0">(DE-588)14543-9</subfield><subfield code="D">b</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1900-1950</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810243869</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810243863</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034085</subfield></datafield><datafield tag="942" ind1="1" ind2="1"><subfield code="c">355.009</subfield><subfield code="e">22/bsb</subfield><subfield code="f">0904</subfield><subfield code="g">73</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636113 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:48Z |
institution | BVB |
isbn | 9789812810533 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034085 |
oclc_num | 1012665567 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | x, 315 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Chiswell, Ian 1948- Verfasser aut Introduction to [lambda]-trees Ian Chiswell Singapore World Scientific Pub. Co. c2001 x, 315 p. ill txt rdacontent c rdamedia cr rdacarrier "The theory of [lambda]-trees has its origin in the work of Lyndon on length functions in groups. The first definition of an R-tree was given by Tits in 1977. The importance of [lambda]-trees was established by Morgan and Shalen, who showed how to compactify a generalisation of Teichmüller space for a finitely generated group using R-trees. In that work they were led to define the idea of a [lambda]-tree, where [lambda] is an arbitrary ordered abelian group. Since then there has been much progress in understanding the structure of groups acting on R-trees, notably Rips' theorem on free actions. There has also been some progress for certain other ordered abelian groups [lambda], including some interesting connections with model theory.Introduction to [lambda]-Trees will prove to be useful for mathematicians and research students in algebra and topology" USA Navy (DE-588)14543-9 gnd rswk-swf Geschichte 1900-1950 gnd rswk-swf Lambda algebra Trees (Graph theory) Group theory Gruppentheorie (DE-588)4072157-7 gnd rswk-swf USA Navy (DE-588)14543-9 b Geschichte 1900-1950 z DE-604 Gruppentheorie (DE-588)4072157-7 s Erscheint auch als Druck-Ausgabe 9789810243869 Erscheint auch als Druck-Ausgabe 9810243863 http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc Verlag URL des Erstveroeffentlichers Volltext |
spellingShingle | Chiswell, Ian 1948- Introduction to [lambda]-trees USA Navy (DE-588)14543-9 gnd Lambda algebra Trees (Graph theory) Group theory Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)14543-9 (DE-588)4072157-7 |
title | Introduction to [lambda]-trees |
title_auth | Introduction to [lambda]-trees |
title_exact_search | Introduction to [lambda]-trees |
title_full | Introduction to [lambda]-trees Ian Chiswell |
title_fullStr | Introduction to [lambda]-trees Ian Chiswell |
title_full_unstemmed | Introduction to [lambda]-trees Ian Chiswell |
title_short | Introduction to [lambda]-trees |
title_sort | introduction to lambda trees |
topic | USA Navy (DE-588)14543-9 gnd Lambda algebra Trees (Graph theory) Group theory Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | USA Navy Lambda algebra Trees (Graph theory) Group theory Gruppentheorie |
url | http://www.worldscientific.com/worldscibooks/10.1142/4495#t=toc |
work_keys_str_mv | AT chiswellian introductiontolambdatrees |