Local analytic geometry
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2001
|
Schriftenreihe: | Pure and applied mathematics; a series of monographs and textbooks
14 |
Schlagworte: | |
Online-Zugang: | DE-92 URL des Erstveroeffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV044636099 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2001 xx a||| o|||| 00||| eng d | ||
020 | |a 9789812810342 |9 978-981-281-034-2 | ||
024 | 7 | |a 10.1142/4596 |2 doi | |
035 | |a (ZDB-124-WOP)00004433 | ||
035 | |a (OCoLC)1012691499 | ||
035 | |a (DE-599)BVBBV044636099 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 516.3 |2 22 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Abhyankar, Shreeram Shankar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Local analytic geometry |c Shreeram Shankar Abhyankar |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2001 | |
300 | |a xv, 488 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pure and applied mathematics; a series of monographs and textbooks |v 14 | |
500 | |a Originally published: New York : Academic Press, c1964, in series Pure and applied mathematics (Academic Press) ; 14 | ||
520 | |a This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory.The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied.In the transition from punctual to local, i.e. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively | ||
650 | 4 | |a Geometry, Analytic | |
650 | 4 | |a Functional analysis | |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Geometrie |0 (DE-588)4001867-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Menge |0 (DE-588)4142351-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Funktion |0 (DE-588)4142348-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analytische Geometrie |0 (DE-588)4001867-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Analytische Funktion |0 (DE-588)4142348-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Analytische Menge |0 (DE-588)4142351-3 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810245054 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981024505X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030034071 | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc |l DE-92 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819301212778921986 |
---|---|
any_adam_object | |
author | Abhyankar, Shreeram Shankar |
author_facet | Abhyankar, Shreeram Shankar |
author_role | aut |
author_sort | Abhyankar, Shreeram Shankar |
author_variant | s s a ss ssa |
building | Verbundindex |
bvnumber | BV044636099 |
classification_rvk | SK 240 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004433 (OCoLC)1012691499 (DE-599)BVBBV044636099 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03907nam a2200613zcb4500</leader><controlfield tag="001">BV044636099</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2001 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810342</subfield><subfield code="9">978-981-281-034-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4596</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012691499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636099</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhyankar, Shreeram Shankar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local analytic geometry</subfield><subfield code="c">Shreeram Shankar Abhyankar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 488 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pure and applied mathematics; a series of monographs and textbooks</subfield><subfield code="v">14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published: New York : Academic Press, c1964, in series Pure and applied mathematics (Academic Press) ; 14</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory.The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied.In the transition from punctual to local, i.e. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Menge</subfield><subfield code="0">(DE-588)4142351-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Geometrie</subfield><subfield code="0">(DE-588)4001867-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Analytische Menge</subfield><subfield code="0">(DE-588)4142351-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810245054</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981024505X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034071</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636099 |
illustrated | Illustrated |
indexdate | 2024-12-24T06:13:57Z |
institution | BVB |
isbn | 9789812810342 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034071 |
oclc_num | 1012691499 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xv, 488 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Pure and applied mathematics; a series of monographs and textbooks |
spelling | Abhyankar, Shreeram Shankar Verfasser aut Local analytic geometry Shreeram Shankar Abhyankar Singapore World Scientific Pub. Co. c2001 xv, 488 p. ill txt rdacontent c rdamedia cr rdacarrier Pure and applied mathematics; a series of monographs and textbooks 14 Originally published: New York : Academic Press, c1964, in series Pure and applied mathematics (Academic Press) ; 14 This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory.The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from number theory. When it is specialized to the complex case, connectivity and other topological properties come to the fore. In particular, via singularities of analytic sets, topological fundamental groups can be studied.In the transition from punctual to local, i.e. from properties at a point to properties near a point, the classical work of Osgood plays an important role. This gives rise to normic forms and the concept of the Osgoodian. Following Serre, the passage from local to global properties of analytic spaces is facilitated by introducing sheaf theory. Here the fundamental results are the coherence theorems of Oka and Cartan. They are followed by theory normalization due to Oka and Zariski in the analytic and algebraic cases, respectively Geometry, Analytic Functional analysis Polynom (DE-588)4046711-9 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 gnd rswk-swf Analytische Menge (DE-588)4142351-3 gnd rswk-swf Analytische Funktion (DE-588)4142348-3 gnd rswk-swf Analytische Geometrie (DE-588)4001867-2 s 1\p DE-604 Polynom (DE-588)4046711-9 s 2\p DE-604 Analytische Funktion (DE-588)4142348-3 s 3\p DE-604 Analytische Menge (DE-588)4142351-3 s 4\p DE-604 Erscheint auch als Druck-Ausgabe 9789810245054 Erscheint auch als Druck-Ausgabe 981024505X http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Abhyankar, Shreeram Shankar Local analytic geometry Geometry, Analytic Functional analysis Polynom (DE-588)4046711-9 gnd Analytische Geometrie (DE-588)4001867-2 gnd Analytische Menge (DE-588)4142351-3 gnd Analytische Funktion (DE-588)4142348-3 gnd |
subject_GND | (DE-588)4046711-9 (DE-588)4001867-2 (DE-588)4142351-3 (DE-588)4142348-3 |
title | Local analytic geometry |
title_auth | Local analytic geometry |
title_exact_search | Local analytic geometry |
title_full | Local analytic geometry Shreeram Shankar Abhyankar |
title_fullStr | Local analytic geometry Shreeram Shankar Abhyankar |
title_full_unstemmed | Local analytic geometry Shreeram Shankar Abhyankar |
title_short | Local analytic geometry |
title_sort | local analytic geometry |
topic | Geometry, Analytic Functional analysis Polynom (DE-588)4046711-9 gnd Analytische Geometrie (DE-588)4001867-2 gnd Analytische Menge (DE-588)4142351-3 gnd Analytische Funktion (DE-588)4142348-3 gnd |
topic_facet | Geometry, Analytic Functional analysis Polynom Analytische Geometrie Analytische Menge Analytische Funktion |
url | http://www.worldscientific.com/worldscibooks/10.1142/4596#t=toc |
work_keys_str_mv | AT abhyankarshreeramshankar localanalyticgeometry |