Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1995
|
Schriftenreihe: | Advanced series in mathematical physics
v. 21 |
Schlagworte: | |
Online-Zugang: | DE-92 URL des Erstveroeffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV044635934 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1995 xx a||| o|||| 00||| eng d | ||
020 | |a 9789812798237 |9 978-981-279-823-7 | ||
024 | 7 | |a 10.1142/2467 |2 doi | |
035 | |a (ZDB-124-WOP)00005133 | ||
035 | |a (OCoLC)897106456 | ||
035 | |a (DE-599)BVBBV044635934 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.55 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Varchenko, A. N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups |c A. Varchenko |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1995 | |
300 | |a ix, 371 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series in mathematical physics |v v. 21 | |
520 | |a This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals | ||
650 | 4 | |a Hypergeometric functions | |
650 | 4 | |a Kac-Moody algebras | |
650 | 4 | |a Representations of Lie algebras | |
650 | 4 | |a Representations of quantum groups | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kac-Moody-Algebra |0 (DE-588)4223399-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kac-Moody-Algebra |0 (DE-588)4223399-9 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 2 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | 2 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 2 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 2 | 2 | |a Hypergeometrische Reihe |0 (DE-588)4161061-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810218805 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 981021880X |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-030033905 | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc |l DE-92 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819301212710764544 |
---|---|
any_adam_object | |
author | Varchenko, A. N. |
author_facet | Varchenko, A. N. |
author_role | aut |
author_sort | Varchenko, A. N. |
author_variant | a n v an anv |
building | Verbundindex |
bvnumber | BV044635934 |
classification_rvk | SK 340 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005133 (OCoLC)897106456 (DE-599)BVBBV044635934 |
dewey-full | 515.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.55 |
dewey-search | 515.55 |
dewey-sort | 3515.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03637nam a2200673zcb4500</leader><controlfield tag="001">BV044635934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798237</subfield><subfield code="9">978-981-279-823-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2467</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)897106456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varchenko, A. N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups</subfield><subfield code="c">A. Varchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 371 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series in mathematical physics</subfield><subfield code="v">v. 21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergeometric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kac-Moody algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of quantum groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810218805</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981021880X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033905</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635934 |
illustrated | Illustrated |
indexdate | 2024-12-24T06:13:57Z |
institution | BVB |
isbn | 9789812798237 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033905 |
oclc_num | 897106456 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | ix, 371 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Advanced series in mathematical physics |
spelling | Varchenko, A. N. Verfasser aut Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko Singapore World Scientific Pub. Co. c1995 ix, 371 p. ill txt rdacontent c rdamedia cr rdacarrier Advanced series in mathematical physics v. 21 This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals Hypergeometric functions Kac-Moody algebras Representations of Lie algebras Representations of quantum groups Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Quantengruppe (DE-588)4252437-4 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf Kac-Moody-Algebra (DE-588)4223399-9 gnd rswk-swf Kac-Moody-Algebra (DE-588)4223399-9 s Darstellungstheorie (DE-588)4148816-7 s Hypergeometrische Reihe (DE-588)4161061-1 s 1\p DE-604 Lie-Algebra (DE-588)4130355-6 s 2\p DE-604 Quantengruppe (DE-588)4252437-4 s 3\p DE-604 Erscheint auch als Druck-Ausgabe 9789810218805 Erscheint auch als Druck-Ausgabe 981021880X http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Varchenko, A. N. Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups Hypergeometric functions Kac-Moody algebras Representations of Lie algebras Representations of quantum groups Lie-Algebra (DE-588)4130355-6 gnd Quantengruppe (DE-588)4252437-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Kac-Moody-Algebra (DE-588)4223399-9 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4252437-4 (DE-588)4148816-7 (DE-588)4161061-1 (DE-588)4223399-9 |
title | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups |
title_auth | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups |
title_exact_search | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups |
title_full | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko |
title_fullStr | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko |
title_full_unstemmed | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko |
title_short | Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups |
title_sort | multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups |
topic | Hypergeometric functions Kac-Moody algebras Representations of Lie algebras Representations of quantum groups Lie-Algebra (DE-588)4130355-6 gnd Quantengruppe (DE-588)4252437-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd Hypergeometrische Reihe (DE-588)4161061-1 gnd Kac-Moody-Algebra (DE-588)4223399-9 gnd |
topic_facet | Hypergeometric functions Kac-Moody algebras Representations of Lie algebras Representations of quantum groups Lie-Algebra Quantengruppe Darstellungstheorie Hypergeometrische Reihe Kac-Moody-Algebra |
url | http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc |
work_keys_str_mv | AT varchenkoan multidimensionalhypergeometricfunctionsandrepresentationtheoryofliealgebrasandquantumgroups |