Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups

This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Varchenko, A. N. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c1995
Schriftenreihe:Advanced series in mathematical physics v. 21
Schlagworte:
Online-Zugang:DE-92
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV044635934
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 171120s1995 xx a||| o|||| 00||| eng d
020 |a 9789812798237  |9 978-981-279-823-7 
024 7 |a 10.1142/2467  |2 doi 
035 |a (ZDB-124-WOP)00005133 
035 |a (OCoLC)897106456 
035 |a (DE-599)BVBBV044635934 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 515.55  |2 22 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Varchenko, A. N.  |e Verfasser  |4 aut 
245 1 0 |a Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups  |c A. Varchenko 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c1995 
300 |a ix, 371 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Advanced series in mathematical physics  |v v. 21 
520 |a This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals 
650 4 |a Hypergeometric functions 
650 4 |a Kac-Moody algebras 
650 4 |a Representations of Lie algebras 
650 4 |a Representations of quantum groups 
650 0 7 |a Lie-Algebra  |0 (DE-588)4130355-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantengruppe  |0 (DE-588)4252437-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Darstellungstheorie  |0 (DE-588)4148816-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Kac-Moody-Algebra  |0 (DE-588)4223399-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Kac-Moody-Algebra  |0 (DE-588)4223399-9  |D s 
689 0 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 0 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 1 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 1 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Quantengruppe  |0 (DE-588)4252437-4  |D s 
689 2 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 2 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 2 |8 3\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789810218805 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 981021880X 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030033905 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc  |l DE-92  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301212710764544
any_adam_object
author Varchenko, A. N.
author_facet Varchenko, A. N.
author_role aut
author_sort Varchenko, A. N.
author_variant a n v an anv
building Verbundindex
bvnumber BV044635934
classification_rvk SK 340
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00005133
(OCoLC)897106456
(DE-599)BVBBV044635934
dewey-full 515.55
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.55
dewey-search 515.55
dewey-sort 3515.55
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03637nam a2200673zcb4500</leader><controlfield tag="001">BV044635934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1995 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812798237</subfield><subfield code="9">978-981-279-823-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2467</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)897106456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varchenko, A. N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups</subfield><subfield code="c">A. Varchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">ix, 371 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series in mathematical physics</subfield><subfield code="v">v. 21</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergeometric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kac-Moody algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of quantum groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810218805</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">981021880X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033905</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044635934
illustrated Illustrated
indexdate 2024-12-24T06:13:57Z
institution BVB
isbn 9789812798237
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030033905
oclc_num 897106456
open_access_boolean
owner DE-92
owner_facet DE-92
physical ix, 371 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher World Scientific Pub. Co.
record_format marc
series2 Advanced series in mathematical physics
spelling Varchenko, A. N. Verfasser aut
Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko
Singapore World Scientific Pub. Co. c1995
ix, 371 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
Advanced series in mathematical physics v. 21
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in conformal field theory. The equation is defined in terms of a Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with the Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals
Hypergeometric functions
Kac-Moody algebras
Representations of Lie algebras
Representations of quantum groups
Lie-Algebra (DE-588)4130355-6 gnd rswk-swf
Quantengruppe (DE-588)4252437-4 gnd rswk-swf
Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf
Hypergeometrische Reihe (DE-588)4161061-1 gnd rswk-swf
Kac-Moody-Algebra (DE-588)4223399-9 gnd rswk-swf
Kac-Moody-Algebra (DE-588)4223399-9 s
Darstellungstheorie (DE-588)4148816-7 s
Hypergeometrische Reihe (DE-588)4161061-1 s
1\p DE-604
Lie-Algebra (DE-588)4130355-6 s
2\p DE-604
Quantengruppe (DE-588)4252437-4 s
3\p DE-604
Erscheint auch als Druck-Ausgabe 9789810218805
Erscheint auch als Druck-Ausgabe 981021880X
http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc Verlag URL des Erstveroeffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Varchenko, A. N.
Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
Hypergeometric functions
Kac-Moody algebras
Representations of Lie algebras
Representations of quantum groups
Lie-Algebra (DE-588)4130355-6 gnd
Quantengruppe (DE-588)4252437-4 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Hypergeometrische Reihe (DE-588)4161061-1 gnd
Kac-Moody-Algebra (DE-588)4223399-9 gnd
subject_GND (DE-588)4130355-6
(DE-588)4252437-4
(DE-588)4148816-7
(DE-588)4161061-1
(DE-588)4223399-9
title Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
title_auth Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
title_exact_search Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
title_full Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko
title_fullStr Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko
title_full_unstemmed Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups A. Varchenko
title_short Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups
title_sort multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
topic Hypergeometric functions
Kac-Moody algebras
Representations of Lie algebras
Representations of quantum groups
Lie-Algebra (DE-588)4130355-6 gnd
Quantengruppe (DE-588)4252437-4 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Hypergeometrische Reihe (DE-588)4161061-1 gnd
Kac-Moody-Algebra (DE-588)4223399-9 gnd
topic_facet Hypergeometric functions
Kac-Moody algebras
Representations of Lie algebras
Representations of quantum groups
Lie-Algebra
Quantengruppe
Darstellungstheorie
Hypergeometrische Reihe
Kac-Moody-Algebra
url http://www.worldscientific.com/worldscibooks/10.1142/2467#t=toc
work_keys_str_mv AT varchenkoan multidimensionalhypergeometricfunctionsandrepresentationtheoryofliealgebrasandquantumgroups