Support vector machine in chemistry

In recent years, the support vector machine (SVM), a new data processing method, has been applied to many fields of chemistry and chemical technology. Compared with some other data processing methods, SVM is especially suitable for solving problems of small sample size, with superior prediction perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2004
Schlagworte:
Online-Zugang:DE-92
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV044635635
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 171120s2004 xx a||| o|||| 00||| eng d
020 |a 9789812794710  |c electronic bk.  |9 978-981-279-471-0 
024 7 |a 10.1142/5589  |2 doi 
035 |a (ZDB-124-WOP)00003406 
035 |a (OCoLC)1012670469 
035 |a (DE-599)BVBBV044635635 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 006.31  |2 22 
245 1 0 |a Support vector machine in chemistry  |c Nianyi Chen ... [et al.] 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c2004 
300 |a x, 331 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a In recent years, the support vector machine (SVM), a new data processing method, has been applied to many fields of chemistry and chemical technology. Compared with some other data processing methods, SVM is especially suitable for solving problems of small sample size, with superior prediction performance. SVM is fast becoming a powerful tool of chemometrics. This book provides a systematic approach to the principles and algorithms of SVM, and demonstrates the application examples of SVM in QSAR/QSPR work, materials and experimental design, phase diagram prediction, modeling for the optimal control of chemical industry, and other branches in chemistry and chemical technology 
650 4 |a Machine learning 
650 4 |a Algorithms 
650 4 |a Kernel functions 
700 1 |a Chen, Nianyi  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789812389220 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9812389229 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030033607 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc  |l DE-92  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301209036554240
any_adam_object
building Verbundindex
bvnumber BV044635635
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00003406
(OCoLC)1012670469
(DE-599)BVBBV044635635
dewey-full 006.31
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.31
dewey-search 006.31
dewey-sort 16.31
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02057nam a2200397zc 4500</leader><controlfield tag="001">BV044635635</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2004 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812794710</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-279-471-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5589</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012670469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Support vector machine in chemistry</subfield><subfield code="c">Nianyi Chen ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 331 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the support vector machine (SVM), a new data processing method, has been applied to many fields of chemistry and chemical technology. Compared with some other data processing methods, SVM is especially suitable for solving problems of small sample size, with superior prediction performance. SVM is fast becoming a powerful tool of chemometrics. This book provides a systematic approach to the principles and algorithms of SVM, and demonstrates the application examples of SVM in QSAR/QSPR work, materials and experimental design, phase diagram prediction, modeling for the optimal control of chemical industry, and other branches in chemistry and chemical technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Nianyi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812389220</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812389229</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033607</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044635635
illustrated Illustrated
indexdate 2024-12-24T06:13:56Z
institution BVB
isbn 9789812794710
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030033607
oclc_num 1012670469
open_access_boolean
owner DE-92
owner_facet DE-92
physical x, 331 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher World Scientific Pub. Co.
record_format marc
spelling Support vector machine in chemistry Nianyi Chen ... [et al.]
Singapore World Scientific Pub. Co. c2004
x, 331 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
In recent years, the support vector machine (SVM), a new data processing method, has been applied to many fields of chemistry and chemical technology. Compared with some other data processing methods, SVM is especially suitable for solving problems of small sample size, with superior prediction performance. SVM is fast becoming a powerful tool of chemometrics. This book provides a systematic approach to the principles and algorithms of SVM, and demonstrates the application examples of SVM in QSAR/QSPR work, materials and experimental design, phase diagram prediction, modeling for the optimal control of chemical industry, and other branches in chemistry and chemical technology
Machine learning
Algorithms
Kernel functions
Chen, Nianyi Sonstige oth
Erscheint auch als Druck-Ausgabe 9789812389220
Erscheint auch als Druck-Ausgabe 9812389229
http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc Verlag URL des Erstveroeffentlichers Volltext
spellingShingle Support vector machine in chemistry
Machine learning
Algorithms
Kernel functions
title Support vector machine in chemistry
title_auth Support vector machine in chemistry
title_exact_search Support vector machine in chemistry
title_full Support vector machine in chemistry Nianyi Chen ... [et al.]
title_fullStr Support vector machine in chemistry Nianyi Chen ... [et al.]
title_full_unstemmed Support vector machine in chemistry Nianyi Chen ... [et al.]
title_short Support vector machine in chemistry
title_sort support vector machine in chemistry
topic Machine learning
Algorithms
Kernel functions
topic_facet Machine learning
Algorithms
Kernel functions
url http://www.worldscientific.com/worldscibooks/10.1142/5589#t=toc
work_keys_str_mv AT chennianyi supportvectormachineinchemistry