Least squares support vector machines

This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors expla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. c2002
Schlagworte:
Online-Zugang:DE-92
URL des Erstveroeffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV044635087
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 171120s2002 xx a||| o|||| 00||| eng d
020 |a 9789812776655  |c electronic bk.  |9 978-981-277-665-5 
024 7 |a 10.1142/5089  |2 doi 
035 |a (ZDB-124-WOP)00003127 
035 |a (OCoLC)881299053 
035 |a (DE-599)BVBBV044635087 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92 
082 0 |a 006.31  |2 22 
084 |a ST 301  |0 (DE-625)143651:  |2 rvk 
084 |a ST 304  |0 (DE-625)143653:  |2 rvk 
245 1 0 |a Least squares support vector machines  |c Johan A. K. Suykens ... [et al.] 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c c2002 
300 |a xiv, 294 p.  |b ill 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples 
650 4 |a Machine learning 
650 4 |a Algorithms 
650 4 |a Kernel functions 
650 4 |a Least squares 
650 0 7 |a Support-Vektor-Maschine  |0 (DE-588)4505517-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Lernendes System  |0 (DE-588)4120666-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Support-Vektor-Maschine  |0 (DE-588)4505517-8  |D s 
689 0 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 2 |a Lernendes System  |0 (DE-588)4120666-6  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Suykens, Johan A. K.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789812381514 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9812381511 (alk. paper) 
856 4 0 |u http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc  |x Verlag  |z URL des Erstveroeffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-030033059 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc  |l DE-92  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819301207812866048
any_adam_object
building Verbundindex
bvnumber BV044635087
classification_rvk ST 301
ST 304
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00003127
(OCoLC)881299053
(DE-599)BVBBV044635087
dewey-full 006.31
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.31
dewey-search 006.31
dewey-sort 16.31
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03209nam a2200529zc 4500</leader><controlfield tag="001">BV044635087</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2002 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812776655</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-665-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/5089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881299053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635087</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="0">(DE-625)143653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Least squares support vector machines</subfield><subfield code="c">Johan A. K. Suykens ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 294 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least squares</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Support-Vektor-Maschine</subfield><subfield code="0">(DE-588)4505517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lernendes System</subfield><subfield code="0">(DE-588)4120666-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suykens, Johan A. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789812381514</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9812381511 (alk. paper)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033059</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044635087
illustrated Illustrated
indexdate 2024-12-24T06:13:55Z
institution BVB
isbn 9789812776655
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030033059
oclc_num 881299053
open_access_boolean
owner DE-92
owner_facet DE-92
physical xiv, 294 p. ill
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher World Scientific Pub. Co.
record_format marc
spelling Least squares support vector machines Johan A. K. Suykens ... [et al.]
Singapore World Scientific Pub. Co. c2002
xiv, 294 p. ill
txt rdacontent
c rdamedia
cr rdacarrier
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples
Machine learning
Algorithms
Kernel functions
Least squares
Support-Vektor-Maschine (DE-588)4505517-8 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Lernendes System (DE-588)4120666-6 gnd rswk-swf
Support-Vektor-Maschine (DE-588)4505517-8 s
Maschinelles Lernen (DE-588)4193754-5 s
Lernendes System (DE-588)4120666-6 s
1\p DE-604
Suykens, Johan A. K. Sonstige oth
Erscheint auch als Druck-Ausgabe 9789812381514
Erscheint auch als Druck-Ausgabe 9812381511 (alk. paper)
http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc Verlag URL des Erstveroeffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Least squares support vector machines
Machine learning
Algorithms
Kernel functions
Least squares
Support-Vektor-Maschine (DE-588)4505517-8 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Lernendes System (DE-588)4120666-6 gnd
subject_GND (DE-588)4505517-8
(DE-588)4193754-5
(DE-588)4120666-6
title Least squares support vector machines
title_auth Least squares support vector machines
title_exact_search Least squares support vector machines
title_full Least squares support vector machines Johan A. K. Suykens ... [et al.]
title_fullStr Least squares support vector machines Johan A. K. Suykens ... [et al.]
title_full_unstemmed Least squares support vector machines Johan A. K. Suykens ... [et al.]
title_short Least squares support vector machines
title_sort least squares support vector machines
topic Machine learning
Algorithms
Kernel functions
Least squares
Support-Vektor-Maschine (DE-588)4505517-8 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Lernendes System (DE-588)4120666-6 gnd
topic_facet Machine learning
Algorithms
Kernel functions
Least squares
Support-Vektor-Maschine
Maschinelles Lernen
Lernendes System
url http://www.worldscientific.com/worldscibooks/10.1142/5089#t=toc
work_keys_str_mv AT suykensjohanak leastsquaressupportvectormachines