The golden ratio and Fibonacci numbers

In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dunlap, Richard A. 1952- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. [1997]
Schlagworte:
Online-Zugang:FHN01
UBM01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV044633895
003 DE-604
005 20210419
007 cr|uuu---uuuuu
008 171120s1997 |||| o||u| ||||||eng d
020 |a 9789812386304  |c Online  |9 978-981-238-630-4 
024 7 |a 10.1142/3595  |2 doi 
035 |a (ZDB-124-WOP)00004980 
035 |a (OCoLC)1012628959 
035 |a (DE-599)BVBBV044633895 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-92  |a DE-19 
082 0 |a 512/.72  |2 22 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 380  |0 (DE-625)143235:  |2 rvk 
100 1 |a Dunlap, Richard A.  |d 1952-  |e Verfasser  |0 (DE-588)128527811  |4 aut 
245 1 0 |a The golden ratio and Fibonacci numbers  |c by Richard A. Dunlap 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c [1997] 
264 4 |c © 1997 
300 |a 1 Online-Ressource (vii, 162 S.)  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
520 |a In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences 
650 4 |a Golden section 
650 4 |a Fibonacci numbers 
650 0 7 |a Goldener Schnitt  |0 (DE-588)4021529-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Fibonacci-Folge  |0 (DE-588)4249138-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Schnitt  |g Mathematik  |0 (DE-588)4458889-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Schnitt  |g Mathematik  |0 (DE-588)4458889-6  |D s 
689 0 1 |a Goldener Schnitt  |0 (DE-588)4021529-5  |D s 
689 0 2 |a Fibonacci-Folge  |0 (DE-588)4249138-1  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9789810232641 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9810232640 
856 4 0 |u https://doi.org/10.1142/3595  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-124-WOP 
999 |a oai:aleph.bib-bvb.de:BVB01-030031867 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u http://www.worldscientific.com/worldscibooks/10.1142/3595#t=toc  |l FHN01  |p ZDB-124-WOP  |q FHN_PDA_WOP  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1142/3595  |l UBM01  |p ZDB-124-WOP  |q UBM_PDA_WOP_Kauf  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804178044920791040
any_adam_object
author Dunlap, Richard A. 1952-
author_GND (DE-588)128527811
author_facet Dunlap, Richard A. 1952-
author_role aut
author_sort Dunlap, Richard A. 1952-
author_variant r a d ra rad
building Verbundindex
bvnumber BV044633895
classification_rvk SK 180
SK 380
collection ZDB-124-WOP
ctrlnum (ZDB-124-WOP)00004980
(OCoLC)1012628959
(DE-599)BVBBV044633895
dewey-full 512/.72
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.72
dewey-search 512/.72
dewey-sort 3512 272
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1142/3595
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02833nmm a2200529zc 4500</leader><controlfield tag="001">BV044633895</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210419 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812386304</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-238-630-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/3595</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012628959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044633895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunlap, Richard A.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128527811</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The golden ratio and Fibonacci numbers</subfield><subfield code="c">by Richard A. Dunlap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">[1997]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 162 S.)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Golden section</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci numbers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810232641</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810232640</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/3595</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030031867</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/3595#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/3595</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">UBM_PDA_WOP_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044633895
illustrated Not Illustrated
indexdate 2024-07-10T07:57:43Z
institution BVB
isbn 9789812386304
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-030031867
oclc_num 1012628959
open_access_boolean
owner DE-92
DE-19
DE-BY-UBM
owner_facet DE-92
DE-19
DE-BY-UBM
physical 1 Online-Ressource (vii, 162 S.) Illustrationen
psigel ZDB-124-WOP
ZDB-124-WOP FHN_PDA_WOP
ZDB-124-WOP UBM_PDA_WOP_Kauf
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher World Scientific Pub. Co.
record_format marc
spelling Dunlap, Richard A. 1952- Verfasser (DE-588)128527811 aut
The golden ratio and Fibonacci numbers by Richard A. Dunlap
Singapore World Scientific Pub. Co. [1997]
© 1997
1 Online-Ressource (vii, 162 S.) Illustrationen
txt rdacontent
c rdamedia
cr rdacarrier
In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate projections. The structural properties of aperiodic crystals and the growth of certain biological organisms are described in terms of Fibonacci sequences
Golden section
Fibonacci numbers
Goldener Schnitt (DE-588)4021529-5 gnd rswk-swf
Fibonacci-Folge (DE-588)4249138-1 gnd rswk-swf
Schnitt Mathematik (DE-588)4458889-6 gnd rswk-swf
Schnitt Mathematik (DE-588)4458889-6 s
Goldener Schnitt (DE-588)4021529-5 s
Fibonacci-Folge (DE-588)4249138-1 s
1\p DE-604
Erscheint auch als Druck-Ausgabe 9789810232641
Erscheint auch als Druck-Ausgabe 9810232640
https://doi.org/10.1142/3595 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Dunlap, Richard A. 1952-
The golden ratio and Fibonacci numbers
Golden section
Fibonacci numbers
Goldener Schnitt (DE-588)4021529-5 gnd
Fibonacci-Folge (DE-588)4249138-1 gnd
Schnitt Mathematik (DE-588)4458889-6 gnd
subject_GND (DE-588)4021529-5
(DE-588)4249138-1
(DE-588)4458889-6
title The golden ratio and Fibonacci numbers
title_auth The golden ratio and Fibonacci numbers
title_exact_search The golden ratio and Fibonacci numbers
title_full The golden ratio and Fibonacci numbers by Richard A. Dunlap
title_fullStr The golden ratio and Fibonacci numbers by Richard A. Dunlap
title_full_unstemmed The golden ratio and Fibonacci numbers by Richard A. Dunlap
title_short The golden ratio and Fibonacci numbers
title_sort the golden ratio and fibonacci numbers
topic Golden section
Fibonacci numbers
Goldener Schnitt (DE-588)4021529-5 gnd
Fibonacci-Folge (DE-588)4249138-1 gnd
Schnitt Mathematik (DE-588)4458889-6 gnd
topic_facet Golden section
Fibonacci numbers
Goldener Schnitt
Fibonacci-Folge
Schnitt Mathematik
url https://doi.org/10.1142/3595
work_keys_str_mv AT dunlapricharda thegoldenratioandfibonaccinumbers