Algebraic theory of locally nilpotent derivations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Freudenburg, Gene (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin Springer [2017]
Ausgabe:Second edition
Schriftenreihe:Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups 7
Schlagworte:
Online-Zugang:BTU01
FHR01
FRO01
FWS01
FWS02
HTW01
TUM01
UBM01
UBT01
UBW01
UEI01
UPA01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV044529726
003 DE-604
005 20220208
007 cr|uuu---uuuuu
008 171010s2017 |||| o||u| ||||||eng d
020 |a 9783662553503  |c Online  |9 978-3-662-55350-3 
024 7 |a 10.1007/978-3-662-55350-3  |2 doi 
035 |a (ZDB-2-SMA)9783662553503 
035 |a (OCoLC)1005514900 
035 |a (DE-599)BVBBV044529726 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-898  |a DE-861  |a DE-523  |a DE-703  |a DE-863  |a DE-20  |a DE-739  |a DE-634  |a DE-862  |a DE-824  |a DE-188 
082 0 |a 512.44  |2 23 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a MAT 149f  |2 stub 
084 |a MAT 000  |2 stub 
084 |a MAT 135f  |2 stub 
100 1 |a Freudenburg, Gene  |e Verfasser  |0 (DE-588)1141795884  |4 aut 
245 1 0 |a Algebraic theory of locally nilpotent derivations  |c Gene Freudenburg 
250 |a Second edition 
264 1 |a Berlin  |b Springer  |c [2017] 
300 |a 1 Online-Ressource (XXII, 319 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopaedia of mathematical sciences  |v 136  |x 0938-0396 
490 1 |a Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups  |v 7 
650 4 |a Mathematics 
650 4 |a Algebraic geometry 
650 4 |a Commutative algebra 
650 4 |a Commutative rings 
650 4 |a Topological groups 
650 4 |a Lie groups 
650 4 |a Mathematics 
650 4 |a Commutative Rings and Algebras 
650 4 |a Algebraic Geometry 
650 4 |a Topological Groups, Lie Groups 
650 4 |a Mathematik 
650 0 7 |a Derivation  |g Algebra  |0 (DE-588)4134656-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Derivation  |g Algebra  |0 (DE-588)4134656-7  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-662-55348-0 
830 0 |a Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups  |v 7  |w (DE-604)BV036597991  |9 7 
856 4 0 |u https://doi.org/10.1007/978-3-662-55350-3  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2017 
999 |a oai:aleph.bib-bvb.de:BVB01-029929026 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l BTU01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l FHR01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l FRO01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l FWS01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l FWS02  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l HTW01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l TUM01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l UBM01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l UBT01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l UBW01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l UEI01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-662-55350-3  |l UPA01  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-FWS_katkey 658788
DE-BY-TUM_katkey 2289430
DE-BY-TUM_local_url Verlag
https://doi.org/10.1007/978-3-662-55350-3
_version_ 1816714358407823360
any_adam_object
author Freudenburg, Gene
author_GND (DE-588)1141795884
author_facet Freudenburg, Gene
author_role aut
author_sort Freudenburg, Gene
author_variant g f gf
building Verbundindex
bvnumber BV044529726
classification_rvk SK 260
SK 340
classification_tum MAT 149f
MAT 000
MAT 135f
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)9783662553503
(OCoLC)1005514900
(DE-599)BVBBV044529726
dewey-full 512.44
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.44
dewey-search 512.44
dewey-sort 3512.44
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-55350-3
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03408nmm a2200757zcb4500</leader><controlfield tag="001">BV044529726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171010s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662553503</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-55350-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-55350-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783662553503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005514900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044529726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 149f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freudenburg, Gene</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1141795884</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic theory of locally nilpotent derivations</subfield><subfield code="c">Gene Freudenburg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 319 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">136</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups</subfield><subfield code="v">7</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Derivation</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4134656-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Derivation</subfield><subfield code="g">Algebra</subfield><subfield code="0">(DE-588)4134656-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-662-55348-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV036597991</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2017</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029929026</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-55350-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV044529726
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783662553503
issn 0938-0396
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029929026
oclc_num 1005514900
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-188
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-898
DE-BY-UBR
DE-861
DE-523
DE-703
DE-863
DE-BY-FWS
DE-20
DE-739
DE-634
DE-862
DE-BY-FWS
DE-824
DE-188
physical 1 Online-Ressource (XXII, 319 Seiten)
psigel ZDB-2-SMA
ZDB-2-SMA_2017
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Springer
record_format marc
series Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups
series2 Encyclopaedia of mathematical sciences
Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups
spellingShingle Freudenburg, Gene
Algebraic theory of locally nilpotent derivations
Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups
Mathematics
Algebraic geometry
Commutative algebra
Commutative rings
Topological groups
Lie groups
Commutative Rings and Algebras
Algebraic Geometry
Topological Groups, Lie Groups
Mathematik
Derivation Algebra (DE-588)4134656-7 gnd
subject_GND (DE-588)4134656-7
title Algebraic theory of locally nilpotent derivations
title_auth Algebraic theory of locally nilpotent derivations
title_exact_search Algebraic theory of locally nilpotent derivations
title_full Algebraic theory of locally nilpotent derivations Gene Freudenburg
title_fullStr Algebraic theory of locally nilpotent derivations Gene Freudenburg
title_full_unstemmed Algebraic theory of locally nilpotent derivations Gene Freudenburg
title_short Algebraic theory of locally nilpotent derivations
title_sort algebraic theory of locally nilpotent derivations
topic Mathematics
Algebraic geometry
Commutative algebra
Commutative rings
Topological groups
Lie groups
Commutative Rings and Algebras
Algebraic Geometry
Topological Groups, Lie Groups
Mathematik
Derivation Algebra (DE-588)4134656-7 gnd
topic_facet Mathematics
Algebraic geometry
Commutative algebra
Commutative rings
Topological groups
Lie groups
Commutative Rings and Algebras
Algebraic Geometry
Topological Groups, Lie Groups
Mathematik
Derivation Algebra
url https://doi.org/10.1007/978-3-662-55350-3
volume_link (DE-604)BV036597991
work_keys_str_mv AT freudenburggene algebraictheoryoflocallynilpotentderivations