Stein manifolds and holomorphic mappings the homotopy principle in complex analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Forstnerič, Franc 1958- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham, Switzerland Springer [2017]
Ausgabe:Second edition
Schriftenreihe:Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge volume 56
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV044513414
003 DE-604
005 20220412
007 t
008 170926s2017 a||| |||| 00||| eng d
020 |a 9783319610573  |c hardcover  |9 978-3-319-61057-3 
020 |a 9783319869940  |c softcover  |9 978-3-319-86994-0 
035 |a (OCoLC)1005928280 
035 |a (DE-599)BSZ493702903 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-83  |a DE-20  |a DE-355  |a DE-11 
082 0 |a 515.9 
084 |a SK 780  |0 (DE-625)143255:  |2 rvk 
084 |a 32E10  |2 msc 
100 1 |a Forstnerič, Franc  |d 1958-  |e Verfasser  |0 (DE-588)1016469241  |4 aut 
245 1 0 |a Stein manifolds and holomorphic mappings  |b the homotopy principle in complex analysis  |c Franc Forstnerič 
250 |a Second edition 
264 1 |a Cham, Switzerland  |b Springer  |c [2017] 
264 4 |c © 2017 
300 |a xiv, 562 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge  |v volume 56 
650 0 7 |a Holomorphe Abbildung  |0 (DE-588)4160471-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Stein-Mannigfaltigkeit  |0 (DE-588)4183070-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Stein-Mannigfaltigkeit  |0 (DE-588)4183070-2  |D s 
689 0 1 |a Holomorphe Abbildung  |0 (DE-588)4160471-4  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-319-61058-0 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge  |v volume 56  |w (DE-604)BV000899194  |9 56 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029913141&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-029913141 

Datensatz im Suchindex

_version_ 1804177852166307840
adam_text Titel: Stein manifolds and holomorphic mappings Autor: Forstnerič, Franc Jahr: 2017 Contents Part I Stein Manifolds 1 Preliminaries.............................. 3 1.1 Complex Manifolds and Holomorphic Maps........... 3 1.2 Examples of Complex Manifolds................. 7 1.3 Subvarieties and Complex Spaces................ 10 1.4 Holomorphic Fibre Bundles................... 13 1.5 Holomorphic Vector Bundles................... 16 1.6 The Tangent Bundle ....................... 21 1.7 The Cotangent Bundle and Differential Forms.......... 24 1.8 Plurisubharmonic Functions and the Levi Form......... 27 1.9 Vector Fields, Flows and Foliations............... 32 1.10 What is the H-Principle?..................... 39 2 Stein Manifolds............................. 45 2.1 Domains of Holomorphy..................... 45 2.2 Stein Manifolds and Stein Spaces................ 49 2.3 Holomorphic Convexity and the Oka-Weil Theorem ...... 50 2.4 Embedding Stein Manifolds into Euclidean Spaces....... 51 2.5 Characterization by Plurisubharmonic Functions . ....... 52 2.6 Cartan-Serre Theorems A B.................. 54 2.7 The 3-Problem.......................... 58 2.8 Cartan-Oka-Weil Theorem with Parameters........... 59 3 Stein Neighborhoods and Approximation .............. 65 3.1 g-Complete Neighborhoods................... 65 3.2 Stein Neighborhoods of Stein Subvarieties............ 70 3.3 Holomorphic Retractions onto Stein Submanifolds....... 73 3.4 A Semiglobal Holomorphic Extension Theorem......... 75 3.5 Approximation on Totally Real Submanifolds.......... 79 3.6 Stein Neighborhoods of Laminated Sets............. 82 3.7 Stein Compacts with Totally Real Handles............ 86 xi Contents xii 3.8 A Mergelyan Approximation Theorem .............. 88 3.9 Strongly Pseudoconvex Handlebodies.............. 90 3.10 Morse Critical Points of g -Convex Functions.......... 94 3.11 Critical Levels of a g -Convex Function............. 98 3.12 Topological Structure of a Stein Space.............. 102 4 Automorphisms of Complex Euclidean Spaces............ 107 4.1 Shears............................... 107 4.2 Automorphisms of C 2 ...................... 112 4.3 Attracting Basins and Fatou-Bieberbach Domains........ 115 4.4 Random Iterations and the Push-Out Method.......... 123 4.5 Mittag-Leffler Theorem for Entire Maps............. 126 4.6 Tame Discrete Sets in C ..................... 127 4.7 Unavoidable and Rigid Discrete Sets............... 130 4.8 Algorithms for Computing Flows ................ 133 4.9 The Andersén-Lempert Theory.................. 135 4.10 The Density Property....................... 141 4.11 Automorphisms Fixing a Subvariety............... 151 4.12 Moving Polynomially Convex Sets................ 157 4.13 Moving Totally Real Submanifolds ............... 161 4.14 Carleman Approximation by Automorphisms.......... 164 4.15 Automorphisms with Given Jets................. 169 4.16 Mittag-Leffler Theorem for Automorphisms of C” ....... 175 4.17 Interpolation by Fatou-Bieberbach Maps............. 181 4.18 Twisted Holomorphic Embeddings into C ........... 185 4.19 Nonlinearizable Periodic Automorphisms of C ......... 189 4.20 A Non-Runge Fatou-Bieberbach Domain............ 195 4.21 A Long C 2 Without Holomorphic Functions........... 197 Part II Oka Theory 5 Oka Manifolds............................. 207 5.1 A Historical Introduction to the Oka Principle.......... 207 5.2 Cousin Problems and Oka’s Theorem.............. 209 5.3 The Oka-Grauert Principle.................... 212 5.4 What is an Oka Manifold?.................... 215 5.5 Basic Properties of Oka manifolds................ 219 5.6 Examples of Oka Manifolds................... 223 5.7 Cartan Pairs............................ 234 5.8 A Splitting Lemma........................ 235 5.9 Gluing Holomorphic Sprays................... 239 5.10 Noncritical Strongly Pseudoconvex Extensions......... 242 5.11 Proof of Theorem 5.4.4: The Basic Case............. 245 5.12 Proof of Theorem 5.4.4: Stratified Fibre Bundles........ 247 5.13 Proof of Theorem 5.4.4: The Parametric Case.......... 252 5.14 Existence Theorems for Holomorphic Sections......... 256 5.15 Equivalences Between Oka Properties.............. 258 Contents xiii 6 Elliptic Complex Geometry and Oka Theory ............ 263 6.1 Fibre Sprays and Elliptic Submersions.............. 264 6.2 The Oka Principle for Sections of Stratified Subelliptic Submersions........................... 265 6.3 Composed and Iterated Sprays . ................. 267 6.4 Examples of Subelliptic Manifolds and Submersions...... 271 6.5 Lifting Homotopies to Spray Bundles............... 280 6.6 Runge Theorem for Sections of Subelliptic Submersions .... 283 6.7 Gluing Holomorphic Sections on C-Pairs............ 287 6.8 Complexes of Holomorphic Sections............... 290 6.9 C-Strings............................. 293 6.10 Construction of the Initial Holomorphic Complex........ 295 6.11 The Main Modification Lemma................. 297 6.12 Proof of Theorems 6.2.2 and 6.6.6................ 303 6.13 Relative Oka Principle on 1-Convex Manifolds......... 306 6.14 The Oka Principle for Sections of Branched Maps........ 307 6.15 Approximation by Algebraic Maps................ 312 7 Flexibility Properties of Complex Manifolds and Holomorphic Maps 319 7.1 Hierarchy of Holomorphic Flexibility Properties ........ 320 7.2 Stratified Oka Manifolds and Kummer Surfaces......... 325 7.3 Oka Properties of Compact Complex Surfaces.......... 328 7.4 Oka Maps............................. 332 7.5 A Homotopy-Theoretic Viewpoint on Oka Theory ....... 336 7.6 Miscellanea and Open Problems................. 342 Part IH Applications 8 Applications of Oka Theory and Its Methods ............ 353 8.1 Principal Fibre Bundles...................... 353 8.2 The Oka-Grauert Principle for G-Bundles............ 356 8.3 Homomorphisms and Generators of Vector Bundles....... 360 8.4 Generators of Coherent Analytic Sheaves............ 366 8.5 The Number of Equations Defining a Subvariety........ 369 8.6 Elimination of Intersections............. 373 8.7 Holomorphic Vaserstein Problem ................ 375 8.8 Transversality Theorems for Holomorphic Maps........ 378 8.9 Singularities of Holomorphic Maps............... 386 8.10 Local Sprays of Class A(D) ................... 388 8.11 Stein Neighborhoods of A(D)-Graphs.............. 393 8.12 Oka Principle on Strongly Pseudoconvex Domains....... 398 8.13 Banach Manifolds of Holomorphic Mappings.......... 400 9 Embeddings, Immersions and Submersions............. 403 9.1 The H-Principle for Totally Real Immersions and for Complex Submersions........................... 404 9.2 (Almost) Proper Maps to Euclidean Spaces........... 411 xiv Contents 9.3 Embedding and Immersing Stein Manifolds into Euclidean Spaces of Minimal Dimension.................. 415 9.4 Proof of the Relative Embedding Theorem............ 420 9.5 Weakly Regular Embeddings and Interpolation......... 426 9.6 The Oka Principle for Holomorphic Immersions ........ 429 9.7 A Splitting Lemma for Biholomorphic Maps.......... 431 9.8 The Oka Principle for Proper Holomorphic Maps........ 436 9.9 Exposing Points of Bordered Riemann Surfaces......... 441 9.10 Embedding Bordered Riemann Surfaces in C 2 ......... 446 9.11 Infinitely Connected Complex Curves in C 2 ........... 450 9.12 Approximation of Holomorphic Submersions.......... 457 9.13 Noncritical Holomorphic Functions............... 461 9.14 The Oka Principle for Holomorphic Submersions........ 469 9.15 Closed Holomorphic 1-Forms Without Zeros.......... 470 9.16 Holomorphic Foliations on Stein Manifolds........... 472 10 Topological Methods in Stein Geometry ............... 477 10.1 Real Surfaces in Complex Surfaces ............... 478 10.2 Invariants of Smooth 4-Manifolds................ 482 10.3 Lai Indexes and Index Formulas................. 484 10.4 Cancelling Pairs of Complex Points............... 488 10.5 Applications of the Cancellation Theorem............ 492 10.6 The Adjunction Inequality in Kahler Surfaces.......... 498 10.7 The Adjunction Inequality in Stein Surfaces........... 505 10.8 Well Attached Handles...................... 509 10.9 Stein Structures and the Soft Oka Principle........... 517 10.10 The Case dim R X ^ 4....................... 520 10.11 Exotic Stein Structures on Smooth 4-Manifolds......... 523 References.................................. 533 Index..................................... 557
any_adam_object 1
author Forstnerič, Franc 1958-
author_GND (DE-588)1016469241
author_facet Forstnerič, Franc 1958-
author_role aut
author_sort Forstnerič, Franc 1958-
author_variant f f ff
building Verbundindex
bvnumber BV044513414
classification_rvk SK 780
ctrlnum (OCoLC)1005928280
(DE-599)BSZ493702903
dewey-full 515.9
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.9
dewey-search 515.9
dewey-sort 3515.9
dewey-tens 510 - Mathematics
discipline Mathematik
edition Second edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01843nam a2200433 cb4500</leader><controlfield tag="001">BV044513414</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220412 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">170926s2017 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319610573</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-319-61057-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319869940</subfield><subfield code="c">softcover</subfield><subfield code="9">978-3-319-86994-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005928280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ493702903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32E10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forstnerič, Franc</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1016469241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stein manifolds and holomorphic mappings</subfield><subfield code="b">the homotopy principle in complex analysis</subfield><subfield code="c">Franc Forstnerič</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 562 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge</subfield><subfield code="v">volume 56</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183070-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stein-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183070-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Holomorphe Abbildung</subfield><subfield code="0">(DE-588)4160471-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-61058-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge</subfield><subfield code="v">volume 56</subfield><subfield code="w">(DE-604)BV000899194</subfield><subfield code="9">56</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029913141&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029913141</subfield></datafield></record></collection>
id DE-604.BV044513414
illustrated Illustrated
indexdate 2024-07-10T07:54:39Z
institution BVB
isbn 9783319610573
9783319869940
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029913141
oclc_num 1005928280
open_access_boolean
owner DE-83
DE-20
DE-355
DE-BY-UBR
DE-11
owner_facet DE-83
DE-20
DE-355
DE-BY-UBR
DE-11
physical xiv, 562 Seiten Illustrationen
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Springer
record_format marc
series Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
series2 Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
spelling Forstnerič, Franc 1958- Verfasser (DE-588)1016469241 aut
Stein manifolds and holomorphic mappings the homotopy principle in complex analysis Franc Forstnerič
Second edition
Cham, Switzerland Springer [2017]
© 2017
xiv, 562 Seiten Illustrationen
txt rdacontent
n rdamedia
nc rdacarrier
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge volume 56
Holomorphe Abbildung (DE-588)4160471-4 gnd rswk-swf
Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd rswk-swf
Stein-Mannigfaltigkeit (DE-588)4183070-2 s
Holomorphe Abbildung (DE-588)4160471-4 s
DE-604
Erscheint auch als Online-Ausgabe 978-3-319-61058-0
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge volume 56 (DE-604)BV000899194 56
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029913141&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Forstnerič, Franc 1958-
Stein manifolds and holomorphic mappings the homotopy principle in complex analysis
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
Holomorphe Abbildung (DE-588)4160471-4 gnd
Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd
subject_GND (DE-588)4160471-4
(DE-588)4183070-2
title Stein manifolds and holomorphic mappings the homotopy principle in complex analysis
title_auth Stein manifolds and holomorphic mappings the homotopy principle in complex analysis
title_exact_search Stein manifolds and holomorphic mappings the homotopy principle in complex analysis
title_full Stein manifolds and holomorphic mappings the homotopy principle in complex analysis Franc Forstnerič
title_fullStr Stein manifolds and holomorphic mappings the homotopy principle in complex analysis Franc Forstnerič
title_full_unstemmed Stein manifolds and holomorphic mappings the homotopy principle in complex analysis Franc Forstnerič
title_short Stein manifolds and holomorphic mappings
title_sort stein manifolds and holomorphic mappings the homotopy principle in complex analysis
title_sub the homotopy principle in complex analysis
topic Holomorphe Abbildung (DE-588)4160471-4 gnd
Stein-Mannigfaltigkeit (DE-588)4183070-2 gnd
topic_facet Holomorphe Abbildung
Stein-Mannigfaltigkeit
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029913141&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000899194
work_keys_str_mv AT forstnericfranc steinmanifoldsandholomorphicmappingsthehomotopyprincipleincomplexanalysis