Boiling research and advances

Front Cover -- Boiling -- Copyright Page -- Contents -- List of Contributors -- Biographies -- Preface -- The Phase Change Research Committee -- Contributors -- 1 Outline of Boiling Phenomena and Heat Transfer Characteristics -- 1.1 Pool Boiling -- 1.2 Flow Boiling -- References -- 1.3 Other Aspects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Koizumi, Yasuo (HerausgeberIn), Shoji, Masahiro (HerausgeberIn), Monde, Masanori (HerausgeberIn), Takata, Yasuyuki (HerausgeberIn), Nagai, Niro (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam Elsevier [2017]
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044461067
003 DE-604
005 20170919
007 t|
008 170825s2017 xx |||| 00||| eng d
020 |a 9780081010105  |9 978-0-08-101010-5 
035 |a (OCoLC)1005673830 
035 |a (DE-599)BVBBV044461067 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-29T 
100 1 |a Koizumi, Yasuo  |4 edt 
245 1 0 |a Boiling  |b research and advances  |c edited by Yasuo Koizumi [und 4 Andere] 
264 1 |a Amsterdam  |b Elsevier  |c [2017] 
300 |a xlv, 801 pages 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
520 1 |a Front Cover -- Boiling -- Copyright Page -- Contents -- List of Contributors -- Biographies -- Preface -- The Phase Change Research Committee -- Contributors -- 1 Outline of Boiling Phenomena and Heat Transfer Characteristics -- 1.1 Pool Boiling -- 1.2 Flow Boiling -- References -- 1.3 Other Aspects -- References -- 2 Nucleate Boiling -- 2.1 MEMS Sensor Technology and the Mechanism of Isolated Bubble Nucleate Boiling -- 2.1.1 Introduction -- 2.1.2 MEMS Sensor Technology in Boiling Research -- 2.1.2.1 Sensor Type and Performance -- 2.1.2.2 Signal Conditioning -- 2.1.2.3 Sensor Design for Pool Nucleate Boiling -- 2.1.2.4 Sensor Calibration -- 2.1.2.5 Experimental System and Conditions -- 2.1.2.6 Calculation of Local Heat Flux -- 2.1.2.7 Calculation of Wall Heat Transfer and Latent Heat in Bubble -- 2.1.3 Heat Transfer Mechanisms Revealed by MEMS Thermal Measurement -- 2.1.3.1 Bubble Growth Characteristics -- 2.1.3.2 Phenomenological Model of Isolated Bubble Pool Boiling -- 2.1.3.3 Fundamental Heat Transfer Phenomena Observed from Local Wall Temperature and Heat Flux -- 2.1.3.4 Microlayer Thickness -- 2.1.3.5 Characteristics of Wall Heat Transfer and Bubble Growth -- 2.1.3.6 Effect of Wall Superheat on Boiling Heat Transfer -- 2.1.3.7 Continuous Bubble Boiling -- 2.1.4 Conclusion -- References -- 2.2 Measurement of the Microlayer During Nucleate Boiling and Its Heat Transfer Mechanism -- 2.2.1 Introduction -- 2.2.2 Measurement of Microlayer Structure by Laser Extinction Method -- 2.2.2.1 Experimental Apparatus and Method -- 2.2.2.2 Initial Distribution of Microlayer Thickness -- 2.2.3 Measurement of Microlayer Structure by Laser Interferometric Method -- 2.2.4 Basic Characteristics and Correlations Concerning the Microlayer in Nucleate Pool Boiling -- 2.2.5 Numerical Simulation on the Heat Transfer Plate During Boiling 
520 1 |a 2.2.5.1 Heat Transfer Characteristics of the Microlayer in an Evaporation System -- 2.2.5.2 Contribution of Microlayer Evaporation -- 2.2.6 Numerical Simulation on the Two-Phase Vapor-Liquid Flow During Boiling -- 2.2.6.1 Variation in Microlayer Radius and Bubble Volume -- 2.2.6.2 Temperature Distribution of Liquid in the Vicinity of the Bubble Interface -- 2.2.6.3 Heat Transfer Characteristics of Microlayer Evaporation -- 2.2.6.4 Contribution of Microlayer Evaporation -- 2.2.7 Conclusion -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.3 Configuration of the Microlayer and Characteristics of Heat Transfer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.1 Introduction -- 2.3.2 Mechanisms and Characteristics of Boiling Heat Transfer in the Narrow-Gap Mini-/Microchannels -- 2.3.2.1 General Features of Boiling Phenomena in Narrow-Gap Mini-/Microchannels -- 2.3.2.1.1 Effect of surface wetting on boiling heat transfer characteristics in mini-/micro-gaps -- 2.3.2.1.2 Mechanisms and characteristics of boiling heat transfer in the narrow-gap mini-/microchannel on a wettable surface -- 2.3.2.1.3 Experimental apparatus and method -- 2.3.2.2 Configuration of the Microlayer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.2.2.1 Effect of heat flux, distance from bubble inception site, bubble forefront velocity and gap size on the initial m... -- 2.3.2.2.2 Distribution of initial microlayer thickness -- 2.3.2.3 Consideration of Heat Transfer Characteristics on the Basis of Configuration of the Microlayer -- 2.3.2.3.1 Characteristics of phenomena in microlayer-dominant region and method of analysis of heat transfer characteristics -- 2.3.2.3.2 Analysis and discussion of the heat transfer characteristics -- 2.3.3 Characteristics of a Microlayer for Various Liquids and a Correlation of Microlayer Thickness in a Narrow-Gap Mini-/M 
520 1 |a 2.3.3.1 Measurement of Microlayer Thickness for Various Test Liquids -- 2.3.3.2 Numerical Simulation of the Bubble Growth Process in the Microchannel -- 2.3.3.2.1 Formulation of the problem and the model geometry and initial and boundary conditions -- 2.3.3.2.2 Comparison between simulation and measurement results for HFE7200 -- 2.3.3.2.3 Study of effect of physical properties -- 2.3.3.3 Dimension Analysis and Correlation -- 2.3.4 Conclusion -- Nomenclature -- Greek Symbols -- Nondimensional Numbers -- References -- 2.4 Surface Tension of High-Carbon Alcohol Aqueous Solutions: Its Dependence on Temperature and Concentration and Applicati... -- 2.4.1 Introduction -- 2.4.2 Surface Tension Measurements of High-Carbon Alcohol Aqueous Solutions -- 2.4.2.1 Method -- 2.4.2.2 Results -- 2.4.2.3 Discussion -- 2.4.3 Effect of High-Carbon Alcohol Aqueous Solutions on the Critical Heat Flux Condition in Boiling with Impinging Flow in... -- 2.4.3.1 Method -- 2.4.3.2 Results -- 2.4.3.3 Discussion -- 2.4.4 Conclusion -- Acknowledgments -- Nomenclature -- Greek Symbols -- References -- 2.5 Nucleate Boiling of Mixtures -- 2.5.1 Mixture Effects on Elementary Processes of Nucleate Boiling -- 2.5.1.1 Phase Equilibrium Diagram -- 2.5.1.2 Boiling Incipience -- 2.5.1.3 Bubble Growth Rate -- 2.5.1.4 Bubble Departure -- 2.5.2 Heat Transfer Coefficient -- 2.5.2.1 Predicting Method and Correlations -- 2.5.2.2 Existing Topics for Mixture Boiling -- 2.5.3 Experimental Investigation of the Marangoni Effect -- 2.5.4 Superior Heat Transfer Characteristics of Immiscible Mixtures -- 2.5.4.1 Objectives to Use Immiscible Mixtures -- 2.5.4.2 Existing Research -- 2.5.4.3 Phase Equilibrium -- 2.5.4.4 Experimental Results -- 2.5.5 Conclusions -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.6 Bubble Dynamics in Subcooled Flow Boiling -- 2.6.1 Introduction 
700 1 |a Shoji, Masahiro  |4 edt 
700 1 |a Monde, Masanori  |4 edt 
700 1 |a Takata, Yasuyuki  |4 edt 
700 1 |a Nagai, Niro  |4 edt 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-08-101117-1 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029861738 

Datensatz im Suchindex

_version_ 1819300887027253250
any_adam_object
author2 Koizumi, Yasuo
Shoji, Masahiro
Monde, Masanori
Takata, Yasuyuki
Nagai, Niro
author2_role edt
edt
edt
edt
edt
author2_variant y k yk
m s ms
m m mm
y t yt
n n nn
author_facet Koizumi, Yasuo
Shoji, Masahiro
Monde, Masanori
Takata, Yasuyuki
Nagai, Niro
building Verbundindex
bvnumber BV044461067
ctrlnum (OCoLC)1005673830
(DE-599)BVBBV044461067
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06624nam a2200361 c 4500</leader><controlfield tag="001">BV044461067</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170825s2017 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780081010105</subfield><subfield code="9">978-0-08-101010-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005673830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044461067</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koizumi, Yasuo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boiling</subfield><subfield code="b">research and advances</subfield><subfield code="c">edited by Yasuo Koizumi [und 4 Andere]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xlv, 801 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">Front Cover -- Boiling -- Copyright Page -- Contents -- List of Contributors -- Biographies -- Preface -- The Phase Change Research Committee -- Contributors -- 1 Outline of Boiling Phenomena and Heat Transfer Characteristics -- 1.1 Pool Boiling -- 1.2 Flow Boiling -- References -- 1.3 Other Aspects -- References -- 2 Nucleate Boiling -- 2.1 MEMS Sensor Technology and the Mechanism of Isolated Bubble Nucleate Boiling -- 2.1.1 Introduction -- 2.1.2 MEMS Sensor Technology in Boiling Research -- 2.1.2.1 Sensor Type and Performance -- 2.1.2.2 Signal Conditioning -- 2.1.2.3 Sensor Design for Pool Nucleate Boiling -- 2.1.2.4 Sensor Calibration -- 2.1.2.5 Experimental System and Conditions -- 2.1.2.6 Calculation of Local Heat Flux -- 2.1.2.7 Calculation of Wall Heat Transfer and Latent Heat in Bubble -- 2.1.3 Heat Transfer Mechanisms Revealed by MEMS Thermal Measurement -- 2.1.3.1 Bubble Growth Characteristics -- 2.1.3.2 Phenomenological Model of Isolated Bubble Pool Boiling -- 2.1.3.3 Fundamental Heat Transfer Phenomena Observed from Local Wall Temperature and Heat Flux -- 2.1.3.4 Microlayer Thickness -- 2.1.3.5 Characteristics of Wall Heat Transfer and Bubble Growth -- 2.1.3.6 Effect of Wall Superheat on Boiling Heat Transfer -- 2.1.3.7 Continuous Bubble Boiling -- 2.1.4 Conclusion -- References -- 2.2 Measurement of the Microlayer During Nucleate Boiling and Its Heat Transfer Mechanism -- 2.2.1 Introduction -- 2.2.2 Measurement of Microlayer Structure by Laser Extinction Method -- 2.2.2.1 Experimental Apparatus and Method -- 2.2.2.2 Initial Distribution of Microlayer Thickness -- 2.2.3 Measurement of Microlayer Structure by Laser Interferometric Method -- 2.2.4 Basic Characteristics and Correlations Concerning the Microlayer in Nucleate Pool Boiling -- 2.2.5 Numerical Simulation on the Heat Transfer Plate During Boiling</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">2.2.5.1 Heat Transfer Characteristics of the Microlayer in an Evaporation System -- 2.2.5.2 Contribution of Microlayer Evaporation -- 2.2.6 Numerical Simulation on the Two-Phase Vapor-Liquid Flow During Boiling -- 2.2.6.1 Variation in Microlayer Radius and Bubble Volume -- 2.2.6.2 Temperature Distribution of Liquid in the Vicinity of the Bubble Interface -- 2.2.6.3 Heat Transfer Characteristics of Microlayer Evaporation -- 2.2.6.4 Contribution of Microlayer Evaporation -- 2.2.7 Conclusion -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.3 Configuration of the Microlayer and Characteristics of Heat Transfer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.1 Introduction -- 2.3.2 Mechanisms and Characteristics of Boiling Heat Transfer in the Narrow-Gap Mini-/Microchannels -- 2.3.2.1 General Features of Boiling Phenomena in Narrow-Gap Mini-/Microchannels -- 2.3.2.1.1 Effect of surface wetting on boiling heat transfer characteristics in mini-/micro-gaps -- 2.3.2.1.2 Mechanisms and characteristics of boiling heat transfer in the narrow-gap mini-/microchannel on a wettable surface -- 2.3.2.1.3 Experimental apparatus and method -- 2.3.2.2 Configuration of the Microlayer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.2.2.1 Effect of heat flux, distance from bubble inception site, bubble forefront velocity and gap size on the initial m... -- 2.3.2.2.2 Distribution of initial microlayer thickness -- 2.3.2.3 Consideration of Heat Transfer Characteristics on the Basis of Configuration of the Microlayer -- 2.3.2.3.1 Characteristics of phenomena in microlayer-dominant region and method of analysis of heat transfer characteristics -- 2.3.2.3.2 Analysis and discussion of the heat transfer characteristics -- 2.3.3 Characteristics of a Microlayer for Various Liquids and a Correlation of Microlayer Thickness in a Narrow-Gap Mini-/M</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">2.3.3.1 Measurement of Microlayer Thickness for Various Test Liquids -- 2.3.3.2 Numerical Simulation of the Bubble Growth Process in the Microchannel -- 2.3.3.2.1 Formulation of the problem and the model geometry and initial and boundary conditions -- 2.3.3.2.2 Comparison between simulation and measurement results for HFE7200 -- 2.3.3.2.3 Study of effect of physical properties -- 2.3.3.3 Dimension Analysis and Correlation -- 2.3.4 Conclusion -- Nomenclature -- Greek Symbols -- Nondimensional Numbers -- References -- 2.4 Surface Tension of High-Carbon Alcohol Aqueous Solutions: Its Dependence on Temperature and Concentration and Applicati... -- 2.4.1 Introduction -- 2.4.2 Surface Tension Measurements of High-Carbon Alcohol Aqueous Solutions -- 2.4.2.1 Method -- 2.4.2.2 Results -- 2.4.2.3 Discussion -- 2.4.3 Effect of High-Carbon Alcohol Aqueous Solutions on the Critical Heat Flux Condition in Boiling with Impinging Flow in... -- 2.4.3.1 Method -- 2.4.3.2 Results -- 2.4.3.3 Discussion -- 2.4.4 Conclusion -- Acknowledgments -- Nomenclature -- Greek Symbols -- References -- 2.5 Nucleate Boiling of Mixtures -- 2.5.1 Mixture Effects on Elementary Processes of Nucleate Boiling -- 2.5.1.1 Phase Equilibrium Diagram -- 2.5.1.2 Boiling Incipience -- 2.5.1.3 Bubble Growth Rate -- 2.5.1.4 Bubble Departure -- 2.5.2 Heat Transfer Coefficient -- 2.5.2.1 Predicting Method and Correlations -- 2.5.2.2 Existing Topics for Mixture Boiling -- 2.5.3 Experimental Investigation of the Marangoni Effect -- 2.5.4 Superior Heat Transfer Characteristics of Immiscible Mixtures -- 2.5.4.1 Objectives to Use Immiscible Mixtures -- 2.5.4.2 Existing Research -- 2.5.4.3 Phase Equilibrium -- 2.5.4.4 Experimental Results -- 2.5.5 Conclusions -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.6 Bubble Dynamics in Subcooled Flow Boiling -- 2.6.1 Introduction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shoji, Masahiro</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monde, Masanori</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takata, Yasuyuki</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagai, Niro</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-08-101117-1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029861738</subfield></datafield></record></collection>
id DE-604.BV044461067
illustrated Not Illustrated
indexdate 2024-12-24T06:08:47Z
institution BVB
isbn 9780081010105
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029861738
oclc_num 1005673830
open_access_boolean
owner DE-29T
owner_facet DE-29T
physical xlv, 801 pages
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Elsevier
record_format marc
spelling Koizumi, Yasuo edt
Boiling research and advances edited by Yasuo Koizumi [und 4 Andere]
Amsterdam Elsevier [2017]
xlv, 801 pages
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references and index
Front Cover -- Boiling -- Copyright Page -- Contents -- List of Contributors -- Biographies -- Preface -- The Phase Change Research Committee -- Contributors -- 1 Outline of Boiling Phenomena and Heat Transfer Characteristics -- 1.1 Pool Boiling -- 1.2 Flow Boiling -- References -- 1.3 Other Aspects -- References -- 2 Nucleate Boiling -- 2.1 MEMS Sensor Technology and the Mechanism of Isolated Bubble Nucleate Boiling -- 2.1.1 Introduction -- 2.1.2 MEMS Sensor Technology in Boiling Research -- 2.1.2.1 Sensor Type and Performance -- 2.1.2.2 Signal Conditioning -- 2.1.2.3 Sensor Design for Pool Nucleate Boiling -- 2.1.2.4 Sensor Calibration -- 2.1.2.5 Experimental System and Conditions -- 2.1.2.6 Calculation of Local Heat Flux -- 2.1.2.7 Calculation of Wall Heat Transfer and Latent Heat in Bubble -- 2.1.3 Heat Transfer Mechanisms Revealed by MEMS Thermal Measurement -- 2.1.3.1 Bubble Growth Characteristics -- 2.1.3.2 Phenomenological Model of Isolated Bubble Pool Boiling -- 2.1.3.3 Fundamental Heat Transfer Phenomena Observed from Local Wall Temperature and Heat Flux -- 2.1.3.4 Microlayer Thickness -- 2.1.3.5 Characteristics of Wall Heat Transfer and Bubble Growth -- 2.1.3.6 Effect of Wall Superheat on Boiling Heat Transfer -- 2.1.3.7 Continuous Bubble Boiling -- 2.1.4 Conclusion -- References -- 2.2 Measurement of the Microlayer During Nucleate Boiling and Its Heat Transfer Mechanism -- 2.2.1 Introduction -- 2.2.2 Measurement of Microlayer Structure by Laser Extinction Method -- 2.2.2.1 Experimental Apparatus and Method -- 2.2.2.2 Initial Distribution of Microlayer Thickness -- 2.2.3 Measurement of Microlayer Structure by Laser Interferometric Method -- 2.2.4 Basic Characteristics and Correlations Concerning the Microlayer in Nucleate Pool Boiling -- 2.2.5 Numerical Simulation on the Heat Transfer Plate During Boiling
2.2.5.1 Heat Transfer Characteristics of the Microlayer in an Evaporation System -- 2.2.5.2 Contribution of Microlayer Evaporation -- 2.2.6 Numerical Simulation on the Two-Phase Vapor-Liquid Flow During Boiling -- 2.2.6.1 Variation in Microlayer Radius and Bubble Volume -- 2.2.6.2 Temperature Distribution of Liquid in the Vicinity of the Bubble Interface -- 2.2.6.3 Heat Transfer Characteristics of Microlayer Evaporation -- 2.2.6.4 Contribution of Microlayer Evaporation -- 2.2.7 Conclusion -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.3 Configuration of the Microlayer and Characteristics of Heat Transfer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.1 Introduction -- 2.3.2 Mechanisms and Characteristics of Boiling Heat Transfer in the Narrow-Gap Mini-/Microchannels -- 2.3.2.1 General Features of Boiling Phenomena in Narrow-Gap Mini-/Microchannels -- 2.3.2.1.1 Effect of surface wetting on boiling heat transfer characteristics in mini-/micro-gaps -- 2.3.2.1.2 Mechanisms and characteristics of boiling heat transfer in the narrow-gap mini-/microchannel on a wettable surface -- 2.3.2.1.3 Experimental apparatus and method -- 2.3.2.2 Configuration of the Microlayer in a Narrow-Gap Mini-/Microchannel Boiling System -- 2.3.2.2.1 Effect of heat flux, distance from bubble inception site, bubble forefront velocity and gap size on the initial m... -- 2.3.2.2.2 Distribution of initial microlayer thickness -- 2.3.2.3 Consideration of Heat Transfer Characteristics on the Basis of Configuration of the Microlayer -- 2.3.2.3.1 Characteristics of phenomena in microlayer-dominant region and method of analysis of heat transfer characteristics -- 2.3.2.3.2 Analysis and discussion of the heat transfer characteristics -- 2.3.3 Characteristics of a Microlayer for Various Liquids and a Correlation of Microlayer Thickness in a Narrow-Gap Mini-/M
2.3.3.1 Measurement of Microlayer Thickness for Various Test Liquids -- 2.3.3.2 Numerical Simulation of the Bubble Growth Process in the Microchannel -- 2.3.3.2.1 Formulation of the problem and the model geometry and initial and boundary conditions -- 2.3.3.2.2 Comparison between simulation and measurement results for HFE7200 -- 2.3.3.2.3 Study of effect of physical properties -- 2.3.3.3 Dimension Analysis and Correlation -- 2.3.4 Conclusion -- Nomenclature -- Greek Symbols -- Nondimensional Numbers -- References -- 2.4 Surface Tension of High-Carbon Alcohol Aqueous Solutions: Its Dependence on Temperature and Concentration and Applicati... -- 2.4.1 Introduction -- 2.4.2 Surface Tension Measurements of High-Carbon Alcohol Aqueous Solutions -- 2.4.2.1 Method -- 2.4.2.2 Results -- 2.4.2.3 Discussion -- 2.4.3 Effect of High-Carbon Alcohol Aqueous Solutions on the Critical Heat Flux Condition in Boiling with Impinging Flow in... -- 2.4.3.1 Method -- 2.4.3.2 Results -- 2.4.3.3 Discussion -- 2.4.4 Conclusion -- Acknowledgments -- Nomenclature -- Greek Symbols -- References -- 2.5 Nucleate Boiling of Mixtures -- 2.5.1 Mixture Effects on Elementary Processes of Nucleate Boiling -- 2.5.1.1 Phase Equilibrium Diagram -- 2.5.1.2 Boiling Incipience -- 2.5.1.3 Bubble Growth Rate -- 2.5.1.4 Bubble Departure -- 2.5.2 Heat Transfer Coefficient -- 2.5.2.1 Predicting Method and Correlations -- 2.5.2.2 Existing Topics for Mixture Boiling -- 2.5.3 Experimental Investigation of the Marangoni Effect -- 2.5.4 Superior Heat Transfer Characteristics of Immiscible Mixtures -- 2.5.4.1 Objectives to Use Immiscible Mixtures -- 2.5.4.2 Existing Research -- 2.5.4.3 Phase Equilibrium -- 2.5.4.4 Experimental Results -- 2.5.5 Conclusions -- Nomenclature -- Greek Symbols -- Subscripts -- References -- 2.6 Bubble Dynamics in Subcooled Flow Boiling -- 2.6.1 Introduction
Shoji, Masahiro edt
Monde, Masanori edt
Takata, Yasuyuki edt
Nagai, Niro edt
Erscheint auch als Online-Ausgabe 978-0-08-101117-1
spellingShingle Boiling research and advances
title Boiling research and advances
title_auth Boiling research and advances
title_exact_search Boiling research and advances
title_full Boiling research and advances edited by Yasuo Koizumi [und 4 Andere]
title_fullStr Boiling research and advances edited by Yasuo Koizumi [und 4 Andere]
title_full_unstemmed Boiling research and advances edited by Yasuo Koizumi [und 4 Andere]
title_short Boiling
title_sort boiling research and advances
title_sub research and advances
work_keys_str_mv AT koizumiyasuo boilingresearchandadvances
AT shojimasahiro boilingresearchandadvances
AT mondemasanori boilingresearchandadvances
AT takatayasuyuki boilingresearchandadvances
AT nagainiro boilingresearchandadvances