Applied bioengineering innovations and future directions
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2017]
|
Schriftenreihe: | Advanced biotechnology
5 |
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/ Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV044258555 | ||
003 | DE-604 | ||
005 | 20180823 | ||
007 | t| | ||
008 | 170404s2017 gw a||| |||| 00||| eng d | ||
015 | |a 16,N35 |2 dnb | ||
016 | 7 | |a 1112219749 |2 DE-101 | |
020 | |a 9783527340750 |c hbk |9 978-3-527-34075-0 | ||
024 | 3 | |a 9783527340750 | |
028 | 5 | 2 | |a Bestellnummer: 1134075 000 |
035 | |a (OCoLC)992527477 | ||
035 | |a (DE-599)DNB1112219749 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-12 |a DE-29T |a DE-634 |a DE-83 | ||
082 | 0 | |a 540 |2 23 | |
084 | |a WF 9700 |0 (DE-625)148458: |2 rvk | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Applied bioengineering |b innovations and future directions |c edited by Toshiomi Yoshida |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a XXV, 623 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced biotechnology |v volume 5 | |
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
653 | |a Biochemical Engineering | ||
653 | |a Biochemische Verfahrenstechnik | ||
653 | |a Biomedical Engineering | ||
653 | |a Biomedizintechnik | ||
653 | |a Biotechnologie i. d. Biowissenschaften | ||
653 | |a Biotechnologie i. d. Chemie | ||
653 | |a Biotechnology | ||
653 | |a Biowissenschaften | ||
653 | |a Chemical Engineering | ||
653 | |a Chemie | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Chemistry | ||
653 | |a Life Sciences | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yoshida, Toshiomi |d 1939- |0 (DE-588)1128830205 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePDF |z 978-3-527-80058-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, ePub |z 978-3-527-80060-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, Mobi |z 978-3-527-80061-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, obook |z 978-3-527-80059-9 |
830 | 0 | |a Advanced biotechnology |v 5 |w (DE-604)BV043302234 |9 5 | |
856 | 4 | 0 | |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/ |x Verlag |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029663550&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029663550 |
Datensatz im Suchindex
_version_ | 1819692241758715904 |
---|---|
adam_text | Titel: Applied bioengineering
Autor: Yoshida, Toshiomi
Jahr: 2017
V
Contents
List of Contributors XIX
1 Introduction 1
Toshiomi Yoshida
1.1 Introduction 1
1.2 Enzyme Technology 2
1.3 Microbial Process Engineering 2
1.3.1 Bioreactor Development 2
1.3.2 Measurement and Monitoring 3
1.3.3 Modeling and Control 4
1.3.4 Solid-State Fermentation 4
1.4 Plant Cell Culture 5
1.5 Animal Cell Culture 5
1.6 Environmental Bioengineering 6
1.7 Composition of the Volume 7
References 7
Parti Enzyme Technology 11
2 Enzyme Technology: History and Current Trends 13
Klaus Buchholz and Uwe T. Bornscheuer
2.1 The Early Period up to 1890 13
2.1.1 Observations and Empirical Results 13
2.1.2 Theoretical Approaches 14
2.2 The Period from 1890 to 1940 16
2.2.1 Scientific Progress 16
2.2.2 Theoretical Developments 17
2.2.3 Technological Developments 18
2.3 A New Biocatalyst Concept - Immobilized Enzymes 19
2.3.1 Fundamental Research 19
2.3.2 Examples of Industrial Development: The Case of Penicillin Amidase
(PA) - Penicillin Hydrolysis and Derivatives 20
VI Contents
2.3.3 Examples of Industrial Development: The Case of Sugar
Isomerization 23
2.4 Expanding Enzyme Application after the 1950s 24
2.5 Recombinant Technology - A New Era in Biocatalysis and Enzyme
Technology 27
2.5.1 New Enzymes - A Key to Genetic Engineering 27
2.5.2 Analytical and Diagnostic Enzymes 29
2.5.3 Expanding Market of Industrial Enzymes 31
2.6 Current Strategies for Biocatalyst Search and Tailor Design 32
2.6.1 Enzyme Discovery from the Metagenome or Protein Databases 32
2.6.2 Protein Engineering of Enzymes 34
2.6.3 Enzyme Cascade Reactions 35
2.6.4 Metabolic Engineering 37
2.7 Summary and Conclusions 39
Acknowledgment 40
Abbreviations 40
References 40
3 Molecular Engineering of Enzymes 47
Maria Elena Ortiz-Soto andJurgen Seibel
3.1 Introduction 47
3.2 Protein Engineering: An Expanding Toolbox 48
3.2.1 From Sequence to Fold and Function 49
3.2.2 Improving Enzyme Properties by Rational Design and Directed
Evolution 49
3.2.3 Designing Smart Libraries 51
3.2.4 In Vivo Continuous Directed Evolution 54
3.2.5 Diversification of Enzyme Functionalities by Recombination 55
3.3 High-Throughput Screening Systems 56
3.4 Engineered Enzymes for Improved Stability and Asymmetric
Catalysis 58
3.4.1 Stability 58
3.4.1.1 Cellulases 59
3.4.1.2 Lipases 60
3.4.2 Asymmetric Biocatalysis 62
3.5 De Novo Design of Catalysts: Novel Activities within Common
Scaffolds 65
3.6 Conclusions 69
References 69
4 Biocatalytic Process Development 81
John M. Woodley
4.1 A Structured Approach to Biocatalytic Process Development 83
4.2 Process Metrics 83
4.2.1 Reaction Yield 84
Contents VII
4.2.2 Productivity 85
4.2.3 Biocatalyst Yield 85
4.2.4 Product Concentration 86
4.3 Technologies for Implementation of Biocatalytic Processes 87
4.3.1 Biocatalyst Engineering 87
4.3.1.1 Protein and Genetic Engineering 87
4.3.1.2 Biocatalyst Immobilization 87
4.3.2 Reaction Engineering 88
4.3.2.1 Reactant Supply 89
4.3.2.2 Product Removal 89
4.3.2.3 Two-Phase Systems 90
4.4 Industrial Development Examples 91
4.4.1 Development of a Biocatalytic Route to Atorvastatin (Developed by
Codexis Inc., USA) 91
4.4.2 Development of a Biocatalytic Route to Sitagliptin (Developed by
Codexis Inc., USA and Merck and Co., USA) 92
4.5 Future Outlook 95
4.6 Concluding Remarks 96
References 96
5 Development of Enzymatic Reactions in Miniaturized
Reactors 99
Takeshi Honda, Hiroshi Yamaguchi, and Masaya Miyazaki
5.1 Introduction 99
5.2 Fundamental Techniques for Enzyme Immobilization 100
5.2.1 Enzyme Immobilization by Adsorption 101
5.2.1.1 Monoliths and Particles 109
5.2.1.2 Synthetic Polymer Membranes and Papers 109
5.2.1.3 Adsorption to Channel Walls 109
5.2.2 Enzyme Immobilization by Entrapment 110
5.2.2.1 Silica-Based Matrices 111
5.2.2.2 Non-Silica-based Matrices 117
5.2.3 Enzyme Immobilization by Affinity Labeling 119
5.2.3.1 His-Tag/Ni-NTA System 119
5.2.3.2 GST-Tag/Glutathione System 125
5.2.3.3 Avidin/Biotin System 125
5.2.3.4 DNA Hybridization System 126
5.2.3.5 Other Techniques Using Nucleotides for Enzyme
Immobilization 126
5.2.4 Enzyme Immobilization by Covalent Linking 127
5.2.4.1 Immobilization to Solid Supports 127
5.2.4.2 Direct Immobilization to a Channel Wall 142
5.2.4.3 Enzyme Polymerization 146
5.2.5 Enzyme Immobilization by Other Techniques Using
Organisms 149
Vlil Contents
5.2.6 Application of Immobilized Enzymes in Microfluidics 149
5.3 Novel Techniques for Enzyme Immobilization ISO
5.3.1 Polyketone Polymer: Enzyme Immobilization by Hydrogen
Bonds 151
5.3.2 Thermoresponsive Hydrogels 151
5.3.3 Immobilization Methods Using Azide Chemistry 152
5.3.3.1 Staudinger Ligation 152
5.3.3.2 Click Chemistry 152
5.3.4 Graphene-Based Nanomaterial as an Immobilization
Support 153
5.3.5 Immobilization Methods Using Proteins Modified with
Solid-Support-Binding Modules 154
5.4 Conclusions and Future Perspectives 155
Abbreviations 156
References 157
Part II Microbial Process Engineering 167
6 Bioreactor Development and Process Analytical Technology 169
Toshiomi Yoshida
6.1 Introduction 169
6.2 Bioreactor Development 170
6.2.1 Parallel Bioreactor Systems for High-Throughput Processing 171
6.2.1.1 Microtiter Plate Systems 172
6.2.1.2 Stirred-Tank Reactor Systems 178
6.2.1.3 Microfluidic Microbioreactor Systems 184
6.2.1.4 Bubble Column Systems 188
6.2.1.5 Comparison of Various Parallel-Use Micro-/Mini-Bioreactor
System 189
6.2.2 Single-Use Disposable Bioreactor Systems 193
6.2.2.1 Features of Single-Use Bioreactors 194
6.2.2.2 Sensors and Monitoring 194
6.2.2.3 Single-Use Bioreactors in Practical Use 195
6.3 Monitoring and Process Analytical Technology 196
6.3.1 Monitoring and State Recognition 196
6.3.1.1 Sensors for Monitoring Bioprocesses 196
6.3.1.2 Spectrometry 199
6.3.2 Process Analytical Technology (PAT) 200
6.3.2.1 PAT Tools 201
6.3.2.2 PAT Implementations 202
6.4 Conclusion 203
Abbreviations 204
References 204
Contents IX
7 Omics-lntegrated Approach for Metabolic State Analysis of Microbial
Processes 213
Hiroshi Shimizu, Chikara Furusawa, Takashi Hirasawa, Katsunori Yoshikawa,
Yoshihiro Toya, Tomokazu Shirai, and Fumio Matsuda
7.1 General Introduction 213
7.2 Transcriptome Analysis of Microbial Status in Bioprocesses 214
7.2.1 Introduction 214
7.2.2 Microbial Response to Stress Environments and Identification of
Genes Conferring Stress Tolerance in Bioprocesses 215
7.2.3 Transcriptome Analysis of the Ethanol-Stress-Tolerant Strain
Obtained by Evolution Engineering 217
7.3 Analysis of Metabolic State Based on Simulation in a Genome-Scale
Model 219
7.3.1 Introduction 219
7.3.2 Reconstruction of GSMs and Simulation by FBA 219
7.3.3 Using Prediction of Metabolic State for Design of Metabolic
Modification 221
7.4 13C-Based Metabolic Flux Analysis of Microbial Processes 22.3
7.4.1 Introduction 223
7.4.2 Principles of l:iC-MFA 223
7.4.3 Examples of 13C-MFA in Microbial Processes 225
7.5 Comprehensive Phenotypic Analysis of Genes Associated with Stress
Tolerance 227
7.5.1 Introduction 227
7.5.2 Development of a High-Throughput Culture System 228
7.5.3 Calculation of Specific Growth Rate 228
7.5.4 Results of Comprehensive Analysis of Yeast Cells Under Conditions
of High Osmotic Pressure and High Ethanol Concentration 228
7.5.5 Identification of Genes Conferring Desirable Phenotypes Based on
Integration with the Microarray Analysis Method 230
7.6 Multi-Omics Analysis and Data Integration 230
771 Future Aspects for Developing the Field 231
Acknowledgments 233
References 233
8 Control of Microbial Processes 237
Kazuyuki Shimizu, Hiroshi Shimizu, and Toshiomi Yoshida
8.1 Introduction 237
8.2 Monitoring 238
8.2.1 Online Measurements 238
8.2.2 Filtering, Online Estimation, and Software Sensors 239
8.2.3 Algorithm of Extended Kalman Filter and Its Application to Online
Estimation of Specific Rates 239
8.3 Bioprocess Control 242
8.3.1 Control of Fed-Batch Culture 242
X Contents
8.3.2 Online Optimization of Continuous Cultures 244
8.3.3 Cascade Control for Mixed Cultures 246
8.3.4 Supervision and Fault Detection 249
8.4 Recent Trends in Monitoring and Control Technologies 250
8.4. f Sensor Technologies and Analytical Methods 251
8.4.2 Control Technologies 252
8.5 Concluding Remarks 253
Abbreviations 254
References 254
Part III Plant Cell Culture and Engineering 259
9 Contained Molecular Farming Using Plant Cell and Tissue
Cultures 261
Stefan Schillberg, Nicole Raven, Rainer Fischer, Richard M. Twyman, and
Andreas Schiermeyer
9.1 Molecular Farming-Whole Plants and Cell/Tissue Cultures 261
9.2 Plant Cell and Tissue Culture Platforms 263
9.2.1 Cell Suspension Cultures 263
9.2.2 Tissue Cultures 264
9.2.3 Light-Dependent Expression Platforms 264
9.3 Comparison of Whole Plants and In Vitro Culture Platforms 265
9.4 Technical Advances on the Road to Commercialization 267
9.4.1 Improving the Quantity of Recombinant Proteins Produced in Cell
Suspension Cultures 267
9.4.2 Improving the Quality and Consistency of Recombinant Proteins
Produced in Cell Suspension Cultures 269
9.5 Regulatory and Industry Barriers on the Road to
Commercialization 271
9.6 Outlook 273
Acknowledgments 275
References 275
10 Bioprocess Engineering of Plant Cell Suspension Cultures 283
Gregory R. Andrews and Susan C. Roberts
10.1 Introduction 283
10.2 Culture Development and Maintenance 286
10.3 Choice of Culture System 288
10.4 Engineering Considerations 291
10.4.1 Cell Growth and Morphology 291
10.4.2 Gas Requirements 292
10.4.3 Aggregation 292
10.4.4 Medium Rheology 293
10.4.5 Shear Sensitivity 293
10.5 Bioprocess Parameters 294
Contents XI
10.5.1 Medium Composition and Optimization 294
10.5.2 Temperature and pH 294
10.5.3 Agitation 295
10.5.4 Aeration 295
10.6 Operational Modes 296
10.7 Bioreactors for Plant Cell Suspensions 297
10.7.1 Conventional Bioreactors 297
10.7.1.1 Stirred-Tank Reactors 297
10.7.1.2 Pneumatic Bioreactors 300
10.7.2 Disposable Bioreactors 301
10.8 Downstream Processing 303
10.8.1 Specialized Metabolite Extraction and Purification 303
10.8.2 Recombinant Protein Extraction and Purification 304
10.9 Yield Improvement Strategies 306
10.9.1 Specialized Metabolites and Recombinant Proteins 306
10.9.1.1 Cell Immobilization 306
10.9.1.2 In Situ Product Removal 306
10.9.2 Specialized Metabolite Specific Strategies 307
10.9.2.1 Elicitation 307
10.9.2.2 Metabolic Engineering 308
10.9.3 Recombinant-Protein-Specific Strategies 309
10.9.3.1 Expression Systems 309
10.9.3.2 Minimizing Post-Translational Loss of Recombinant Proteins 309
10.10 Case Studies 310
10.10.1 Protalix and the ProCellEx™ Platform 310
10.10.1.1 Background 311
10.10.1.2 The ProCellEx® Platform 311
10.10.1.3 Future Outlook 312
10.10.2 Phyton Biotech, Paclitaxel, and Plant Cell Fermentation
(PCF™) 314
10.10.2.1 Background 314
10.10.2.2 Why Plant Cell Culture? 314
10.10.2.3 Plant Cell Fermentation (PCF™) 315
10.10.2.4 PCF™ Compared to Other Production Platforms 315
10.11 Conclusion 315
References 316
11 The Role of Bacteria in Phytoremediation 327
Zhaoyu Kong and Bernard R. Glick
11.1 The Problem 327
11.1.1 Metals and Organics in the Environment 328
11.1.2 Traditional Clean-up Procedures 328
11.2 Defining Phytoremediation and Its Components 329
11.3 Role of Bacteria in Phytoremediation 330
11.3.1 Biodegradative Bacteria 330
XII Contents
11.3.2 Plant-Growth-Promoting Bacteria 333
11.3.2.1 Role of IAA 333
11.3.2.2 Role of Ethylene 335
11.3.2.3 Role of Nitrogen Fixation 336
11.3.2.4 Role of Siderophores 339
11.3.3 Interaction with Mycorrhizae 340
11.4 Examples of Phytoremediation in Action 342
11.5 Summary and Perspectives 343
References 344
Part IV Animal Cell Cultures 355
12 Cell Line Development for Biomanufacturing Processes 357
Mugdha Gadgil and Wei-Shou Hu
12.1 Introduction 357
12.2 Host Cell 359
12.2.1 Host Cell Engineering 359
12.3 Vector Components 360
12.3.1 Promoter/Enhancer 360
12.3.2 Intron 362
12.3.3 Poly-Adenylation Signal 362
12.3.4 Selection Marker 363
12.3.5 Secretion Leader Sequence 364
12.3.6 Components for Plasmid Cloning in E. coli 364
12.4 Transfection 365
12.4.1 Method of Transfection 365
12.4.2 Plasmid Conformation 366
12.5 Integration of Foreign DNA into Host Chromosome 366
12.5.1 Site-Specific Integration 367
12.5.2 Use of cis-Acting DNA Elements 367
12.6 Amplification 369
12.7 Single-Cell Cloning 370
12.7.1 Culture Medium for Single-Cell Cloning 371
12.7.2 Automated High-Throughput Screening for High-Producer
Clones 372
12.8 Selecting the Production Clone 373
12.8.1 Screening Platform 373
12.8.2 Adaptation 374
12.8.3 Process and Product Attributes 374
12.8.4 Scale-Down Model 375
12.9 Clone Stability 376
12.10 Conclusion 376
Acknowledgments 377
References 377
Contents | XIII
13 Medium Design, Culture Management, and the PAT
Initiative 383
Ziomara P. Gerdtzen
13.1 Historical Perspective on Culture Medium 383
13.2 Cell Growth Environment 384
13.2.1 Natural Cellular Environment 384
13.2.1.1 The Role of Medium 384
13.2.1.2 Medium Design 384
13.3 Media Types 386
13.4 Medium Components 387
13.4.1 Growth-Associated, Unconsumed, and Catalytic Components 388
13.4.1.1 Growth-Associated Components 388
13.4.1.2 Unconsumed Components 388
13.4.1.3 Catalytic Macromolecular Components 388
13.4.2 Water in Media Preparation 388
13.4.3 Sugars and Amino Acids 390
13.4.3.1 Sugars as the Main Carbon Source 390
13.4.3.2 Amino Acids 390
13.4.4 Vitamins, Nucleosides, Fatty Acids, and Lipids 392
13.4.4.1 Vitamins Role 392
13.4.4.2 Fatty Acids and Lipids 393
13.4.5 Bulk Ions and Trace Elements 395
13.4.6 Non-Nutritional Medium Components 396
13.4.6.1 Phenol Red 396
13.4.6.2 Sodium Bicarbonate Buffer 396
13.4.6.3 Alternative Buffers 397
13.4.6.4 Antioxidants 398
13.4.6.5 Mechanical-Damage-Protective Agents 398
13.4.6.6 Antibiotics 399
13.5 High Molecular Weight and Complex Supplements 400
13.5.1 Serum 400
13.5.1.1 Functions of Serum in Cell Culture Medium 400
13.5.1.2 Disadvantages of Serum in Cell Culture Medium 401
13.5.2 Insulin and Insulin-Like Growth Factors 402
13.5.3 Transferrin 402
13.5.4 Serum Albumin and Other Carrier Proteins 403
13.5.5 Cell Adhesion Molecules 404
13.5.6 Protein Hydrolysates 405
13.5.7 Lipid Supplements 406
13.6 Medium for Industrial Production 407
13.6.1 Medium Design and the PAT Initiative 409
13.7 Conclusions 411
References 412
Further Reading/Resources 416
XIV Contents
14 Advanced Bioprocess Engineering: Fed-Batch and Perfusion
Processes 417
Sarika Mehra, Vikas Chandrawanshi, and Kamal Prashad
14.1 Primary Modes of Bioreactor Operation 417
14.2 Fed-Batch Mode of Operation 419
14.2.1 Design of Feed Composition 419
14.2.2 Feeding Strategies for Fed-Batch Culture 422
14.2.2.1 Culture Working Volume as Control 423
14.2.2.2 Concentration of Indicator Metabolite as Control 423
14.2.2.3 Nutrient Consumption Rate as Control 426
14.2.2.4 Predicted Growth Rate as Control 427
14.2.2.5 Culture pH as Control 427
14.2.2.6 Oxygen Uptake Rate as Control 428
14.2.3 Mode and Frequency of Feeding 429
14.2.4 Challenges in Fed-Batch Culture and Future
Directions 430
14.3 Perfusion Mode of Bioreactor Operation 435
14.3.1 Types of Perfusion Devices 435
14.3.1.1 Gravity Settlers 435
14.3.1.2 Filtration 438
14.3.1.3 Centrifuges 441
14.3.1.4 Hydrocyclones 443
14.3.1.5 Acoustic Settlers 444
14.3.2 Feeding Strategies for Perfusion Cultures 445
14.3.2.1 Cell-Density-Based Feeding 445
14.3.2.2 Metabolite-Based Feeding 445
14.3.3 Challenges in Perfusion Culture and Future Directions 446
14.4 Use of Disposables in Cell Culture Bioprocesses 447
14.5 Analytical Methods to Monitor Key Metabolites and
Parameters 450
14.5.1 Enzymatic Assays 450
14.5.2 Spectroscopy-Based Methods 452
14.5.3 Chromatography-Based Methods 452
14.5.4 Microscopy-Based Methods 452
14.5.5 Electrochemical Methods 453
14.6 Concluding Remarks 453
Nomenclature 455
References 456
Further Reading/Resources 468
Contents
PartV Environmental Bioengineering 469
15 Treatment of Industrial and Municipal Wastewater: An Overview about
Basic and Advanced Concepts 471
Jyoti K. Kumar, Parag R. Gogate, and Aniruddha B. Pandit
15.1 Types of Wastewater 471
15.2 Biological Treatment 471
15.3 Wastewater Regulations 473
15.4 Biological Treatment Processes 473
15.5 Aerobic Techniques 475
15.5.1 Mathematical Modeling 475
15.5.2 Types of Aerobic Treatment 476
15.5.2.1 Activated Sludge Process (ASP) 476
15.5.2.2 Trickling Filters 481
15.5.2.3 Rotating Biological Contactors (RBCs) 483
15.5.2.4 Submerged Biological Contactors (SBCs) 484
15.5.2.5 Powdered Activated Carbon Treatment (PACT) Systems 484
15.5.2.6 Membrane Bioreactors 484
15.5.2.7 Biological Aerated Filters (BAFs) 485
15.5.2.8 Hybrid Processes-Integrated Fixed Film Activated Sludge
System 486
15.5.2.9 Use of Ultrasound to Improve the Sludge Characteristics 487
15.6 Anaerobic Techniques 488
15.6.1 Types of Anaerobic Treatment Systems 489
15.6.1.1 Upflow Anaerobic Sludge Blanket (UASB) 489
15.6.1.2 Anaerobic Baffled Reactors (ABR) 490
15.6.1.3 Anaerobic Fluidized Bed Reactors 491
15.6.1.4 Expanded Granule Sludge Blanket (EGSB) Reactor 492
15.6.1.5 Anaerobic Membrane Reactors 492
15.6.2 Improvements for Sludge Management 494
15.7 Aerobic-Anaerobic Processes 495
15.8 Modified Biological Processes 496
15.8.1 Cavitation 496
15.8.2 Fenton Chemistry 500
15.8.3 Ozonation 501
15.8.4 Photocatalysis 503
15.8.5 Overview of Literature Dealing with Combined Processes 505
15.8.6 A Typical Case Study of Biodegradability Enhancement of Distillery
Wastewater Using Hydrodynamic Cavitation 507
Contents
15.8.7 Short Case Study of Intensification of Biological Oxidation Using
Acoustic Cavitation/Fenton Chemistry 509
15.8.8 Summary of Pretreatment Approaches 511
15.9 Overall Conclusions 511
List of Acronyms/Abbreviations 512
List of Variables and Coefficients 513
References 514
16 Treatment of Solid Waste 521
Michael Nelles, Gert Morscheck, Astrid Lemke, and Ay man El Naas
16.1 Biological Treatment of Source Segregated Bio-Waste 522
16.1.1 Composting 522
16.1.1.1 Composting Process 522
16.1.1.2 Composting Technologies 525
16.1.1.3 Compost Use and Quality 531
16.1.1.4 Status of Composting in Europe and Germany 532
16.1.2 Anaerobic Digestion 532
16.1.2.1 Process of Anaerobic Digestion 532
16.1.2.2 AD Technologies 534
16.1.2.3 Digestate Use and Quality 538
16.1.2.4 Status of Anaerobic Digestion in Europe and Germany 538
16.2 Mechanical-Biological Treatment of Mixed Municipal Solid
Waste 538
16.2.1 MBT Technologies 539
16.2.1.1 MBT - Mechanical—Biological Treatment 539
16.2.1.2 MBS - Mechanical-Biological Stabilization 540
16.2.1.3 MPS - Mechanical-Physical Stabilization 541
16.2.1.4 Status for Germany and Europe 541
16.3 Biological Treatment of Agricultural Waste 542
16.4 Conclusion 542
References 542
17 Energy Recovery from Organic Waste 545
Yutaka Nakashimada and Naomichi Nishio
17.1 Advantage of Methane Fermentation for Energy Recovery from
Organic Matter 545
17.2 Basic Knowledge of Methane Fermentation of Organic Wastes 546
17.3 Conventional Methane Fermentation Process 549
17.4 Advanced Methane Fermentation Processes 551
17.4.1 Methane Fermentation of Organic Wastes with High Salinity 551
17.4.2 Methane Fermentation of Nitrogen-Rich Organic Wastes with High
Ammonia 552
17.5 Hydrogen Production from Organic Wastes 555
17.5.1 Hydrogen Production Combining Methane Fermentation 555
17.5.2 Hydrogen Production by Various Anaerobic Bacteria 556
Contents | XVII
17.5.3 Feasible Substrates for Hydrogen Production 558
17.5.4 Bioreactor for High-Rate Hydrogen Production 559
17.6 Upgrading of Biogas from Organic Wastes Based on Biological
Syngas Platform 561
17.6.1 Bioduel Production from Syngas by Acetogens 562
17.6.2 Development of Genetic Engineering Tools of Acetogens 563
17.7 Conclusions 564
References 565
18 Microbial Removal and Recovery of Metals from Wastewater 573
Michihiko Ike, Mitsuo Yamashita, and Masashi Kuroda
18.1 Microbial Reactions Available for Metal Removal/Recovery 574
18.1.1 Bioprecipitation/Biomineralization 575
18.1.2 Biovolatilization 577
18.1.3 Biosorption 578
18.1.4 Bioleaching 581
18.2 Selenium Recovery by Pseudomonas stutzeri NT-I 583
18.2.1 Pseudomonas stutzeri NT-I as a Versatile Tool for Selenium
Recovery 583
18.2.2 Selenium Recovery by Bioprecipitation 585
18.2.3 Selenium Recovery by Biovolatilization 586
18.3 Future Prospects 587
18.3.1 Toward Environmental Conservation and Solutions to Resource
Depletion 587
18.3.2 Development of Removal and Recovery Strategies for Other
Elements 589
18.3.3 Potential for Practical Application 589
18.4 Conclusions 590
References 590
19 Sustainable Use of Phosphorus Through Bio-Based
Recycling 597
Hisao Ohtake
19.1 Introduction 597
19.2 Microbiological Basis 598
19.2.1 Pj Acquisition in Bacteria 598
19.2.2 Bacterial polyP Accumulation 599
19.3 Bio-Based P Recycling 600
19.3.1 Biological P Removal 600
19.3.2 P| Release from polyP-Rich Sludge 601
19.3.3 P| Recovery from Aqueous Solution 602
19.4 Other Options for P Recycling 604
19.4.1 Land Application of Biosolids 604
19.4.2 Animal Manure Management 605
19.4.3 Biosolubilization of Immobilized Pj 606
XVIII | Contents
19.4.4 Industrial P Recycling 606
19.5 Conclusions 607
References 609
Index 613
|
any_adam_object | 1 |
author2 | Yoshida, Toshiomi 1939- |
author2_role | edt |
author2_variant | t y ty |
author_GND | (DE-588)1128830205 |
author_facet | Yoshida, Toshiomi 1939- |
building | Verbundindex |
bvnumber | BV044258555 |
classification_rvk | WF 9700 |
ctrlnum | (OCoLC)992527477 (DE-599)DNB1112219749 |
dewey-full | 540 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 540 - Chemistry and allied sciences |
dewey-raw | 540 |
dewey-search | 540 |
dewey-sort | 3540 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02590nam a22006738cb4500</leader><controlfield tag="001">BV044258555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180823 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170404s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,N35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1112219749</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527340750</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-527-34075-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527340750</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134075 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992527477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1112219749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9700</subfield><subfield code="0">(DE-625)148458:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied bioengineering</subfield><subfield code="b">innovations and future directions</subfield><subfield code="c">edited by Toshiomi Yoshida</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 623 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced biotechnology</subfield><subfield code="v">volume 5</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomedical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomedizintechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Life Sciences</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Toshiomi</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)1128830205</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePDF</subfield><subfield code="z">978-3-527-80058-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePub</subfield><subfield code="z">978-3-527-80060-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, Mobi</subfield><subfield code="z">978-3-527-80061-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, obook</subfield><subfield code="z">978-3-527-80059-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced biotechnology</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV043302234</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/</subfield><subfield code="x">Verlag</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029663550&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029663550</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV044258555 |
illustrated | Illustrated |
indexdate | 2024-12-24T05:55:24Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527340750 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029663550 |
oclc_num | 992527477 |
open_access_boolean | |
owner | DE-703 DE-12 DE-29T DE-634 DE-83 |
owner_facet | DE-703 DE-12 DE-29T DE-634 DE-83 |
physical | XXV, 623 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Wiley-VCH |
record_format | marc |
series | Advanced biotechnology |
series2 | Advanced biotechnology |
spellingShingle | Applied bioengineering innovations and future directions Advanced biotechnology Biotechnologie (DE-588)4069491-4 gnd |
subject_GND | (DE-588)4069491-4 (DE-588)4143413-4 |
title | Applied bioengineering innovations and future directions |
title_auth | Applied bioengineering innovations and future directions |
title_exact_search | Applied bioengineering innovations and future directions |
title_full | Applied bioengineering innovations and future directions edited by Toshiomi Yoshida |
title_fullStr | Applied bioengineering innovations and future directions edited by Toshiomi Yoshida |
title_full_unstemmed | Applied bioengineering innovations and future directions edited by Toshiomi Yoshida |
title_short | Applied bioengineering |
title_sort | applied bioengineering innovations and future directions |
title_sub | innovations and future directions |
topic | Biotechnologie (DE-588)4069491-4 gnd |
topic_facet | Biotechnologie Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029663550&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV043302234 |
work_keys_str_mv | AT yoshidatoshiomi appliedbioengineeringinnovationsandfuturedirections AT wileyvch appliedbioengineeringinnovationsandfuturedirections |