Applied bioengineering innovations and future directions

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Yoshida, Toshiomi 1939- (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Weinheim Wiley-VCH [2017]
Schriftenreihe:Advanced biotechnology 5
Schlagworte:
Online-Zugang:http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008cb4500
001 BV044258555
003 DE-604
005 20180823
007 t|
008 170404s2017 gw a||| |||| 00||| eng d
015 |a 16,N35  |2 dnb 
016 7 |a 1112219749  |2 DE-101 
020 |a 9783527340750  |c hbk  |9 978-3-527-34075-0 
024 3 |a 9783527340750 
028 5 2 |a Bestellnummer: 1134075 000 
035 |a (OCoLC)992527477 
035 |a (DE-599)DNB1112219749 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BW 
049 |a DE-703  |a DE-12  |a DE-29T  |a DE-634  |a DE-83 
082 0 |a 540  |2 23 
084 |a WF 9700  |0 (DE-625)148458:  |2 rvk 
084 |a 540  |2 sdnb 
245 1 0 |a Applied bioengineering  |b innovations and future directions  |c edited by Toshiomi Yoshida 
264 1 |a Weinheim  |b Wiley-VCH  |c [2017] 
264 4 |c © 2017 
300 |a XXV, 623 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced biotechnology  |v volume 5 
650 0 7 |a Biotechnologie  |0 (DE-588)4069491-4  |2 gnd  |9 rswk-swf 
653 |a Biochemical Engineering 
653 |a Biochemische Verfahrenstechnik 
653 |a Biomedical Engineering 
653 |a Biomedizintechnik 
653 |a Biotechnologie i. d. Biowissenschaften 
653 |a Biotechnologie i. d. Chemie 
653 |a Biotechnology 
653 |a Biowissenschaften 
653 |a Chemical Engineering 
653 |a Chemie 
653 |a Chemische Verfahrenstechnik 
653 |a Chemistry 
653 |a Life Sciences 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Biotechnologie  |0 (DE-588)4069491-4  |D s 
689 0 |5 DE-604 
700 1 |a Yoshida, Toshiomi  |d 1939-  |0 (DE-588)1128830205  |4 edt 
710 2 |a Wiley-VCH  |0 (DE-588)16179388-5  |4 pbl 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, ePDF  |z 978-3-527-80058-2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, ePub  |z 978-3-527-80060-5 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, Mobi  |z 978-3-527-80061-2 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe, obook  |z 978-3-527-80059-9 
830 0 |a Advanced biotechnology  |v 5  |w (DE-604)BV043302234  |9 5 
856 4 0 |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/  |x Verlag 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029663550&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029663550 

Datensatz im Suchindex

_version_ 1819692241758715904
adam_text Titel: Applied bioengineering Autor: Yoshida, Toshiomi Jahr: 2017 V Contents List of Contributors XIX 1 Introduction 1 Toshiomi Yoshida 1.1 Introduction 1 1.2 Enzyme Technology 2 1.3 Microbial Process Engineering 2 1.3.1 Bioreactor Development 2 1.3.2 Measurement and Monitoring 3 1.3.3 Modeling and Control 4 1.3.4 Solid-State Fermentation 4 1.4 Plant Cell Culture 5 1.5 Animal Cell Culture 5 1.6 Environmental Bioengineering 6 1.7 Composition of the Volume 7 References 7 Parti Enzyme Technology 11 2 Enzyme Technology: History and Current Trends 13 Klaus Buchholz and Uwe T. Bornscheuer 2.1 The Early Period up to 1890 13 2.1.1 Observations and Empirical Results 13 2.1.2 Theoretical Approaches 14 2.2 The Period from 1890 to 1940 16 2.2.1 Scientific Progress 16 2.2.2 Theoretical Developments 17 2.2.3 Technological Developments 18 2.3 A New Biocatalyst Concept - Immobilized Enzymes 19 2.3.1 Fundamental Research 19 2.3.2 Examples of Industrial Development: The Case of Penicillin Amidase (PA) - Penicillin Hydrolysis and Derivatives 20 VI Contents 2.3.3 Examples of Industrial Development: The Case of Sugar Isomerization 23 2.4 Expanding Enzyme Application after the 1950s 24 2.5 Recombinant Technology - A New Era in Biocatalysis and Enzyme Technology 27 2.5.1 New Enzymes - A Key to Genetic Engineering 27 2.5.2 Analytical and Diagnostic Enzymes 29 2.5.3 Expanding Market of Industrial Enzymes 31 2.6 Current Strategies for Biocatalyst Search and Tailor Design 32 2.6.1 Enzyme Discovery from the Metagenome or Protein Databases 32 2.6.2 Protein Engineering of Enzymes 34 2.6.3 Enzyme Cascade Reactions 35 2.6.4 Metabolic Engineering 37 2.7 Summary and Conclusions 39 Acknowledgment 40 Abbreviations 40 References 40 3 Molecular Engineering of Enzymes 47 Maria Elena Ortiz-Soto andJurgen Seibel 3.1 Introduction 47 3.2 Protein Engineering: An Expanding Toolbox 48 3.2.1 From Sequence to Fold and Function 49 3.2.2 Improving Enzyme Properties by Rational Design and Directed Evolution 49 3.2.3 Designing Smart Libraries 51 3.2.4 In Vivo Continuous Directed Evolution 54 3.2.5 Diversification of Enzyme Functionalities by Recombination 55 3.3 High-Throughput Screening Systems 56 3.4 Engineered Enzymes for Improved Stability and Asymmetric Catalysis 58 3.4.1 Stability 58 3.4.1.1 Cellulases 59 3.4.1.2 Lipases 60 3.4.2 Asymmetric Biocatalysis 62 3.5 De Novo Design of Catalysts: Novel Activities within Common Scaffolds 65 3.6 Conclusions 69 References 69 4 Biocatalytic Process Development 81 John M. Woodley 4.1 A Structured Approach to Biocatalytic Process Development 83 4.2 Process Metrics 83 4.2.1 Reaction Yield 84 Contents VII 4.2.2 Productivity 85 4.2.3 Biocatalyst Yield 85 4.2.4 Product Concentration 86 4.3 Technologies for Implementation of Biocatalytic Processes 87 4.3.1 Biocatalyst Engineering 87 4.3.1.1 Protein and Genetic Engineering 87 4.3.1.2 Biocatalyst Immobilization 87 4.3.2 Reaction Engineering 88 4.3.2.1 Reactant Supply 89 4.3.2.2 Product Removal 89 4.3.2.3 Two-Phase Systems 90 4.4 Industrial Development Examples 91 4.4.1 Development of a Biocatalytic Route to Atorvastatin (Developed by Codexis Inc., USA) 91 4.4.2 Development of a Biocatalytic Route to Sitagliptin (Developed by Codexis Inc., USA and Merck and Co., USA) 92 4.5 Future Outlook 95 4.6 Concluding Remarks 96 References 96 5 Development of Enzymatic Reactions in Miniaturized Reactors 99 Takeshi Honda, Hiroshi Yamaguchi, and Masaya Miyazaki 5.1 Introduction 99 5.2 Fundamental Techniques for Enzyme Immobilization 100 5.2.1 Enzyme Immobilization by Adsorption 101 5.2.1.1 Monoliths and Particles 109 5.2.1.2 Synthetic Polymer Membranes and Papers 109 5.2.1.3 Adsorption to Channel Walls 109 5.2.2 Enzyme Immobilization by Entrapment 110 5.2.2.1 Silica-Based Matrices 111 5.2.2.2 Non-Silica-based Matrices 117 5.2.3 Enzyme Immobilization by Affinity Labeling 119 5.2.3.1 His-Tag/Ni-NTA System 119 5.2.3.2 GST-Tag/Glutathione System 125 5.2.3.3 Avidin/Biotin System 125 5.2.3.4 DNA Hybridization System 126 5.2.3.5 Other Techniques Using Nucleotides for Enzyme Immobilization 126 5.2.4 Enzyme Immobilization by Covalent Linking 127 5.2.4.1 Immobilization to Solid Supports 127 5.2.4.2 Direct Immobilization to a Channel Wall 142 5.2.4.3 Enzyme Polymerization 146 5.2.5 Enzyme Immobilization by Other Techniques Using Organisms 149 Vlil Contents 5.2.6 Application of Immobilized Enzymes in Microfluidics 149 5.3 Novel Techniques for Enzyme Immobilization ISO 5.3.1 Polyketone Polymer: Enzyme Immobilization by Hydrogen Bonds 151 5.3.2 Thermoresponsive Hydrogels 151 5.3.3 Immobilization Methods Using Azide Chemistry 152 5.3.3.1 Staudinger Ligation 152 5.3.3.2 Click Chemistry 152 5.3.4 Graphene-Based Nanomaterial as an Immobilization Support 153 5.3.5 Immobilization Methods Using Proteins Modified with Solid-Support-Binding Modules 154 5.4 Conclusions and Future Perspectives 155 Abbreviations 156 References 157 Part II Microbial Process Engineering 167 6 Bioreactor Development and Process Analytical Technology 169 Toshiomi Yoshida 6.1 Introduction 169 6.2 Bioreactor Development 170 6.2.1 Parallel Bioreactor Systems for High-Throughput Processing 171 6.2.1.1 Microtiter Plate Systems 172 6.2.1.2 Stirred-Tank Reactor Systems 178 6.2.1.3 Microfluidic Microbioreactor Systems 184 6.2.1.4 Bubble Column Systems 188 6.2.1.5 Comparison of Various Parallel-Use Micro-/Mini-Bioreactor System 189 6.2.2 Single-Use Disposable Bioreactor Systems 193 6.2.2.1 Features of Single-Use Bioreactors 194 6.2.2.2 Sensors and Monitoring 194 6.2.2.3 Single-Use Bioreactors in Practical Use 195 6.3 Monitoring and Process Analytical Technology 196 6.3.1 Monitoring and State Recognition 196 6.3.1.1 Sensors for Monitoring Bioprocesses 196 6.3.1.2 Spectrometry 199 6.3.2 Process Analytical Technology (PAT) 200 6.3.2.1 PAT Tools 201 6.3.2.2 PAT Implementations 202 6.4 Conclusion 203 Abbreviations 204 References 204 Contents IX 7 Omics-lntegrated Approach for Metabolic State Analysis of Microbial Processes 213 Hiroshi Shimizu, Chikara Furusawa, Takashi Hirasawa, Katsunori Yoshikawa, Yoshihiro Toya, Tomokazu Shirai, and Fumio Matsuda 7.1 General Introduction 213 7.2 Transcriptome Analysis of Microbial Status in Bioprocesses 214 7.2.1 Introduction 214 7.2.2 Microbial Response to Stress Environments and Identification of Genes Conferring Stress Tolerance in Bioprocesses 215 7.2.3 Transcriptome Analysis of the Ethanol-Stress-Tolerant Strain Obtained by Evolution Engineering 217 7.3 Analysis of Metabolic State Based on Simulation in a Genome-Scale Model 219 7.3.1 Introduction 219 7.3.2 Reconstruction of GSMs and Simulation by FBA 219 7.3.3 Using Prediction of Metabolic State for Design of Metabolic Modification 221 7.4 13C-Based Metabolic Flux Analysis of Microbial Processes 22.3 7.4.1 Introduction 223 7.4.2 Principles of l:iC-MFA 223 7.4.3 Examples of 13C-MFA in Microbial Processes 225 7.5 Comprehensive Phenotypic Analysis of Genes Associated with Stress Tolerance 227 7.5.1 Introduction 227 7.5.2 Development of a High-Throughput Culture System 228 7.5.3 Calculation of Specific Growth Rate 228 7.5.4 Results of Comprehensive Analysis of Yeast Cells Under Conditions of High Osmotic Pressure and High Ethanol Concentration 228 7.5.5 Identification of Genes Conferring Desirable Phenotypes Based on Integration with the Microarray Analysis Method 230 7.6 Multi-Omics Analysis and Data Integration 230 771 Future Aspects for Developing the Field 231 Acknowledgments 233 References 233 8 Control of Microbial Processes 237 Kazuyuki Shimizu, Hiroshi Shimizu, and Toshiomi Yoshida 8.1 Introduction 237 8.2 Monitoring 238 8.2.1 Online Measurements 238 8.2.2 Filtering, Online Estimation, and Software Sensors 239 8.2.3 Algorithm of Extended Kalman Filter and Its Application to Online Estimation of Specific Rates 239 8.3 Bioprocess Control 242 8.3.1 Control of Fed-Batch Culture 242 X Contents 8.3.2 Online Optimization of Continuous Cultures 244 8.3.3 Cascade Control for Mixed Cultures 246 8.3.4 Supervision and Fault Detection 249 8.4 Recent Trends in Monitoring and Control Technologies 250 8.4. f Sensor Technologies and Analytical Methods 251 8.4.2 Control Technologies 252 8.5 Concluding Remarks 253 Abbreviations 254 References 254 Part III Plant Cell Culture and Engineering 259 9 Contained Molecular Farming Using Plant Cell and Tissue Cultures 261 Stefan Schillberg, Nicole Raven, Rainer Fischer, Richard M. Twyman, and Andreas Schiermeyer 9.1 Molecular Farming-Whole Plants and Cell/Tissue Cultures 261 9.2 Plant Cell and Tissue Culture Platforms 263 9.2.1 Cell Suspension Cultures 263 9.2.2 Tissue Cultures 264 9.2.3 Light-Dependent Expression Platforms 264 9.3 Comparison of Whole Plants and In Vitro Culture Platforms 265 9.4 Technical Advances on the Road to Commercialization 267 9.4.1 Improving the Quantity of Recombinant Proteins Produced in Cell Suspension Cultures 267 9.4.2 Improving the Quality and Consistency of Recombinant Proteins Produced in Cell Suspension Cultures 269 9.5 Regulatory and Industry Barriers on the Road to Commercialization 271 9.6 Outlook 273 Acknowledgments 275 References 275 10 Bioprocess Engineering of Plant Cell Suspension Cultures 283 Gregory R. Andrews and Susan C. Roberts 10.1 Introduction 283 10.2 Culture Development and Maintenance 286 10.3 Choice of Culture System 288 10.4 Engineering Considerations 291 10.4.1 Cell Growth and Morphology 291 10.4.2 Gas Requirements 292 10.4.3 Aggregation 292 10.4.4 Medium Rheology 293 10.4.5 Shear Sensitivity 293 10.5 Bioprocess Parameters 294 Contents XI 10.5.1 Medium Composition and Optimization 294 10.5.2 Temperature and pH 294 10.5.3 Agitation 295 10.5.4 Aeration 295 10.6 Operational Modes 296 10.7 Bioreactors for Plant Cell Suspensions 297 10.7.1 Conventional Bioreactors 297 10.7.1.1 Stirred-Tank Reactors 297 10.7.1.2 Pneumatic Bioreactors 300 10.7.2 Disposable Bioreactors 301 10.8 Downstream Processing 303 10.8.1 Specialized Metabolite Extraction and Purification 303 10.8.2 Recombinant Protein Extraction and Purification 304 10.9 Yield Improvement Strategies 306 10.9.1 Specialized Metabolites and Recombinant Proteins 306 10.9.1.1 Cell Immobilization 306 10.9.1.2 In Situ Product Removal 306 10.9.2 Specialized Metabolite Specific Strategies 307 10.9.2.1 Elicitation 307 10.9.2.2 Metabolic Engineering 308 10.9.3 Recombinant-Protein-Specific Strategies 309 10.9.3.1 Expression Systems 309 10.9.3.2 Minimizing Post-Translational Loss of Recombinant Proteins 309 10.10 Case Studies 310 10.10.1 Protalix and the ProCellEx™ Platform 310 10.10.1.1 Background 311 10.10.1.2 The ProCellEx® Platform 311 10.10.1.3 Future Outlook 312 10.10.2 Phyton Biotech, Paclitaxel, and Plant Cell Fermentation (PCF™) 314 10.10.2.1 Background 314 10.10.2.2 Why Plant Cell Culture? 314 10.10.2.3 Plant Cell Fermentation (PCF™) 315 10.10.2.4 PCF™ Compared to Other Production Platforms 315 10.11 Conclusion 315 References 316 11 The Role of Bacteria in Phytoremediation 327 Zhaoyu Kong and Bernard R. Glick 11.1 The Problem 327 11.1.1 Metals and Organics in the Environment 328 11.1.2 Traditional Clean-up Procedures 328 11.2 Defining Phytoremediation and Its Components 329 11.3 Role of Bacteria in Phytoremediation 330 11.3.1 Biodegradative Bacteria 330 XII Contents 11.3.2 Plant-Growth-Promoting Bacteria 333 11.3.2.1 Role of IAA 333 11.3.2.2 Role of Ethylene 335 11.3.2.3 Role of Nitrogen Fixation 336 11.3.2.4 Role of Siderophores 339 11.3.3 Interaction with Mycorrhizae 340 11.4 Examples of Phytoremediation in Action 342 11.5 Summary and Perspectives 343 References 344 Part IV Animal Cell Cultures 355 12 Cell Line Development for Biomanufacturing Processes 357 Mugdha Gadgil and Wei-Shou Hu 12.1 Introduction 357 12.2 Host Cell 359 12.2.1 Host Cell Engineering 359 12.3 Vector Components 360 12.3.1 Promoter/Enhancer 360 12.3.2 Intron 362 12.3.3 Poly-Adenylation Signal 362 12.3.4 Selection Marker 363 12.3.5 Secretion Leader Sequence 364 12.3.6 Components for Plasmid Cloning in E. coli 364 12.4 Transfection 365 12.4.1 Method of Transfection 365 12.4.2 Plasmid Conformation 366 12.5 Integration of Foreign DNA into Host Chromosome 366 12.5.1 Site-Specific Integration 367 12.5.2 Use of cis-Acting DNA Elements 367 12.6 Amplification 369 12.7 Single-Cell Cloning 370 12.7.1 Culture Medium for Single-Cell Cloning 371 12.7.2 Automated High-Throughput Screening for High-Producer Clones 372 12.8 Selecting the Production Clone 373 12.8.1 Screening Platform 373 12.8.2 Adaptation 374 12.8.3 Process and Product Attributes 374 12.8.4 Scale-Down Model 375 12.9 Clone Stability 376 12.10 Conclusion 376 Acknowledgments 377 References 377 Contents | XIII 13 Medium Design, Culture Management, and the PAT Initiative 383 Ziomara P. Gerdtzen 13.1 Historical Perspective on Culture Medium 383 13.2 Cell Growth Environment 384 13.2.1 Natural Cellular Environment 384 13.2.1.1 The Role of Medium 384 13.2.1.2 Medium Design 384 13.3 Media Types 386 13.4 Medium Components 387 13.4.1 Growth-Associated, Unconsumed, and Catalytic Components 388 13.4.1.1 Growth-Associated Components 388 13.4.1.2 Unconsumed Components 388 13.4.1.3 Catalytic Macromolecular Components 388 13.4.2 Water in Media Preparation 388 13.4.3 Sugars and Amino Acids 390 13.4.3.1 Sugars as the Main Carbon Source 390 13.4.3.2 Amino Acids 390 13.4.4 Vitamins, Nucleosides, Fatty Acids, and Lipids 392 13.4.4.1 Vitamins Role 392 13.4.4.2 Fatty Acids and Lipids 393 13.4.5 Bulk Ions and Trace Elements 395 13.4.6 Non-Nutritional Medium Components 396 13.4.6.1 Phenol Red 396 13.4.6.2 Sodium Bicarbonate Buffer 396 13.4.6.3 Alternative Buffers 397 13.4.6.4 Antioxidants 398 13.4.6.5 Mechanical-Damage-Protective Agents 398 13.4.6.6 Antibiotics 399 13.5 High Molecular Weight and Complex Supplements 400 13.5.1 Serum 400 13.5.1.1 Functions of Serum in Cell Culture Medium 400 13.5.1.2 Disadvantages of Serum in Cell Culture Medium 401 13.5.2 Insulin and Insulin-Like Growth Factors 402 13.5.3 Transferrin 402 13.5.4 Serum Albumin and Other Carrier Proteins 403 13.5.5 Cell Adhesion Molecules 404 13.5.6 Protein Hydrolysates 405 13.5.7 Lipid Supplements 406 13.6 Medium for Industrial Production 407 13.6.1 Medium Design and the PAT Initiative 409 13.7 Conclusions 411 References 412 Further Reading/Resources 416 XIV Contents 14 Advanced Bioprocess Engineering: Fed-Batch and Perfusion Processes 417 Sarika Mehra, Vikas Chandrawanshi, and Kamal Prashad 14.1 Primary Modes of Bioreactor Operation 417 14.2 Fed-Batch Mode of Operation 419 14.2.1 Design of Feed Composition 419 14.2.2 Feeding Strategies for Fed-Batch Culture 422 14.2.2.1 Culture Working Volume as Control 423 14.2.2.2 Concentration of Indicator Metabolite as Control 423 14.2.2.3 Nutrient Consumption Rate as Control 426 14.2.2.4 Predicted Growth Rate as Control 427 14.2.2.5 Culture pH as Control 427 14.2.2.6 Oxygen Uptake Rate as Control 428 14.2.3 Mode and Frequency of Feeding 429 14.2.4 Challenges in Fed-Batch Culture and Future Directions 430 14.3 Perfusion Mode of Bioreactor Operation 435 14.3.1 Types of Perfusion Devices 435 14.3.1.1 Gravity Settlers 435 14.3.1.2 Filtration 438 14.3.1.3 Centrifuges 441 14.3.1.4 Hydrocyclones 443 14.3.1.5 Acoustic Settlers 444 14.3.2 Feeding Strategies for Perfusion Cultures 445 14.3.2.1 Cell-Density-Based Feeding 445 14.3.2.2 Metabolite-Based Feeding 445 14.3.3 Challenges in Perfusion Culture and Future Directions 446 14.4 Use of Disposables in Cell Culture Bioprocesses 447 14.5 Analytical Methods to Monitor Key Metabolites and Parameters 450 14.5.1 Enzymatic Assays 450 14.5.2 Spectroscopy-Based Methods 452 14.5.3 Chromatography-Based Methods 452 14.5.4 Microscopy-Based Methods 452 14.5.5 Electrochemical Methods 453 14.6 Concluding Remarks 453 Nomenclature 455 References 456 Further Reading/Resources 468 Contents PartV Environmental Bioengineering 469 15 Treatment of Industrial and Municipal Wastewater: An Overview about Basic and Advanced Concepts 471 Jyoti K. Kumar, Parag R. Gogate, and Aniruddha B. Pandit 15.1 Types of Wastewater 471 15.2 Biological Treatment 471 15.3 Wastewater Regulations 473 15.4 Biological Treatment Processes 473 15.5 Aerobic Techniques 475 15.5.1 Mathematical Modeling 475 15.5.2 Types of Aerobic Treatment 476 15.5.2.1 Activated Sludge Process (ASP) 476 15.5.2.2 Trickling Filters 481 15.5.2.3 Rotating Biological Contactors (RBCs) 483 15.5.2.4 Submerged Biological Contactors (SBCs) 484 15.5.2.5 Powdered Activated Carbon Treatment (PACT) Systems 484 15.5.2.6 Membrane Bioreactors 484 15.5.2.7 Biological Aerated Filters (BAFs) 485 15.5.2.8 Hybrid Processes-Integrated Fixed Film Activated Sludge System 486 15.5.2.9 Use of Ultrasound to Improve the Sludge Characteristics 487 15.6 Anaerobic Techniques 488 15.6.1 Types of Anaerobic Treatment Systems 489 15.6.1.1 Upflow Anaerobic Sludge Blanket (UASB) 489 15.6.1.2 Anaerobic Baffled Reactors (ABR) 490 15.6.1.3 Anaerobic Fluidized Bed Reactors 491 15.6.1.4 Expanded Granule Sludge Blanket (EGSB) Reactor 492 15.6.1.5 Anaerobic Membrane Reactors 492 15.6.2 Improvements for Sludge Management 494 15.7 Aerobic-Anaerobic Processes 495 15.8 Modified Biological Processes 496 15.8.1 Cavitation 496 15.8.2 Fenton Chemistry 500 15.8.3 Ozonation 501 15.8.4 Photocatalysis 503 15.8.5 Overview of Literature Dealing with Combined Processes 505 15.8.6 A Typical Case Study of Biodegradability Enhancement of Distillery Wastewater Using Hydrodynamic Cavitation 507 Contents 15.8.7 Short Case Study of Intensification of Biological Oxidation Using Acoustic Cavitation/Fenton Chemistry 509 15.8.8 Summary of Pretreatment Approaches 511 15.9 Overall Conclusions 511 List of Acronyms/Abbreviations 512 List of Variables and Coefficients 513 References 514 16 Treatment of Solid Waste 521 Michael Nelles, Gert Morscheck, Astrid Lemke, and Ay man El Naas 16.1 Biological Treatment of Source Segregated Bio-Waste 522 16.1.1 Composting 522 16.1.1.1 Composting Process 522 16.1.1.2 Composting Technologies 525 16.1.1.3 Compost Use and Quality 531 16.1.1.4 Status of Composting in Europe and Germany 532 16.1.2 Anaerobic Digestion 532 16.1.2.1 Process of Anaerobic Digestion 532 16.1.2.2 AD Technologies 534 16.1.2.3 Digestate Use and Quality 538 16.1.2.4 Status of Anaerobic Digestion in Europe and Germany 538 16.2 Mechanical-Biological Treatment of Mixed Municipal Solid Waste 538 16.2.1 MBT Technologies 539 16.2.1.1 MBT - Mechanical—Biological Treatment 539 16.2.1.2 MBS - Mechanical-Biological Stabilization 540 16.2.1.3 MPS - Mechanical-Physical Stabilization 541 16.2.1.4 Status for Germany and Europe 541 16.3 Biological Treatment of Agricultural Waste 542 16.4 Conclusion 542 References 542 17 Energy Recovery from Organic Waste 545 Yutaka Nakashimada and Naomichi Nishio 17.1 Advantage of Methane Fermentation for Energy Recovery from Organic Matter 545 17.2 Basic Knowledge of Methane Fermentation of Organic Wastes 546 17.3 Conventional Methane Fermentation Process 549 17.4 Advanced Methane Fermentation Processes 551 17.4.1 Methane Fermentation of Organic Wastes with High Salinity 551 17.4.2 Methane Fermentation of Nitrogen-Rich Organic Wastes with High Ammonia 552 17.5 Hydrogen Production from Organic Wastes 555 17.5.1 Hydrogen Production Combining Methane Fermentation 555 17.5.2 Hydrogen Production by Various Anaerobic Bacteria 556 Contents | XVII 17.5.3 Feasible Substrates for Hydrogen Production 558 17.5.4 Bioreactor for High-Rate Hydrogen Production 559 17.6 Upgrading of Biogas from Organic Wastes Based on Biological Syngas Platform 561 17.6.1 Bioduel Production from Syngas by Acetogens 562 17.6.2 Development of Genetic Engineering Tools of Acetogens 563 17.7 Conclusions 564 References 565 18 Microbial Removal and Recovery of Metals from Wastewater 573 Michihiko Ike, Mitsuo Yamashita, and Masashi Kuroda 18.1 Microbial Reactions Available for Metal Removal/Recovery 574 18.1.1 Bioprecipitation/Biomineralization 575 18.1.2 Biovolatilization 577 18.1.3 Biosorption 578 18.1.4 Bioleaching 581 18.2 Selenium Recovery by Pseudomonas stutzeri NT-I 583 18.2.1 Pseudomonas stutzeri NT-I as a Versatile Tool for Selenium Recovery 583 18.2.2 Selenium Recovery by Bioprecipitation 585 18.2.3 Selenium Recovery by Biovolatilization 586 18.3 Future Prospects 587 18.3.1 Toward Environmental Conservation and Solutions to Resource Depletion 587 18.3.2 Development of Removal and Recovery Strategies for Other Elements 589 18.3.3 Potential for Practical Application 589 18.4 Conclusions 590 References 590 19 Sustainable Use of Phosphorus Through Bio-Based Recycling 597 Hisao Ohtake 19.1 Introduction 597 19.2 Microbiological Basis 598 19.2.1 Pj Acquisition in Bacteria 598 19.2.2 Bacterial polyP Accumulation 599 19.3 Bio-Based P Recycling 600 19.3.1 Biological P Removal 600 19.3.2 P| Release from polyP-Rich Sludge 601 19.3.3 P| Recovery from Aqueous Solution 602 19.4 Other Options for P Recycling 604 19.4.1 Land Application of Biosolids 604 19.4.2 Animal Manure Management 605 19.4.3 Biosolubilization of Immobilized Pj 606 XVIII | Contents 19.4.4 Industrial P Recycling 606 19.5 Conclusions 607 References 609 Index 613
any_adam_object 1
author2 Yoshida, Toshiomi 1939-
author2_role edt
author2_variant t y ty
author_GND (DE-588)1128830205
author_facet Yoshida, Toshiomi 1939-
building Verbundindex
bvnumber BV044258555
classification_rvk WF 9700
ctrlnum (OCoLC)992527477
(DE-599)DNB1112219749
dewey-full 540
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 540 - Chemistry and allied sciences
dewey-raw 540
dewey-search 540
dewey-sort 3540
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Biologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02590nam a22006738cb4500</leader><controlfield tag="001">BV044258555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180823 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170404s2017 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,N35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1112219749</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527340750</subfield><subfield code="c">hbk</subfield><subfield code="9">978-3-527-34075-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527340750</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134075 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992527477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1112219749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">540</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9700</subfield><subfield code="0">(DE-625)148458:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied bioengineering</subfield><subfield code="b">innovations and future directions</subfield><subfield code="c">edited by Toshiomi Yoshida</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 623 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced biotechnology</subfield><subfield code="v">volume 5</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomedical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biomedizintechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Life Sciences</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshida, Toshiomi</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)1128830205</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePDF</subfield><subfield code="z">978-3-527-80058-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, ePub</subfield><subfield code="z">978-3-527-80060-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, Mobi</subfield><subfield code="z">978-3-527-80061-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, obook</subfield><subfield code="z">978-3-527-80059-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced biotechnology</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV043302234</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/</subfield><subfield code="x">Verlag</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029663550&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029663550</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV044258555
illustrated Illustrated
indexdate 2024-12-24T05:55:24Z
institution BVB
institution_GND (DE-588)16179388-5
isbn 9783527340750
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029663550
oclc_num 992527477
open_access_boolean
owner DE-703
DE-12
DE-29T
DE-634
DE-83
owner_facet DE-703
DE-12
DE-29T
DE-634
DE-83
physical XXV, 623 Seiten Illustrationen, Diagramme
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Wiley-VCH
record_format marc
series Advanced biotechnology
series2 Advanced biotechnology
spellingShingle Applied bioengineering innovations and future directions
Advanced biotechnology
Biotechnologie (DE-588)4069491-4 gnd
subject_GND (DE-588)4069491-4
(DE-588)4143413-4
title Applied bioengineering innovations and future directions
title_auth Applied bioengineering innovations and future directions
title_exact_search Applied bioengineering innovations and future directions
title_full Applied bioengineering innovations and future directions edited by Toshiomi Yoshida
title_fullStr Applied bioengineering innovations and future directions edited by Toshiomi Yoshida
title_full_unstemmed Applied bioengineering innovations and future directions edited by Toshiomi Yoshida
title_short Applied bioengineering
title_sort applied bioengineering innovations and future directions
title_sub innovations and future directions
topic Biotechnologie (DE-588)4069491-4 gnd
topic_facet Biotechnologie
Aufsatzsammlung
url http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34075-0/
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029663550&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV043302234
work_keys_str_mv AT yoshidatoshiomi appliedbioengineeringinnovationsandfuturedirections
AT wileyvch appliedbioengineeringinnovationsandfuturedirections