Modern data science with R

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Baumer, Benjamin S. (VerfasserIn), Kaplan, Daniel T. 1959- (VerfasserIn), Horton, Nicholas J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press [2017]
Schriftenreihe:Texts in statistical science
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV044199822
003 DE-604
005 20171211
007 t|
008 170224s2017 xxua||| |||| 00||| eng d
010 |a 016042514 
020 |a 9781498724487  |c Pack book and ebook  |9 978-1-4987-2448-7 
035 |a (OCoLC)974526621 
035 |a (DE-599)BVBBV044199822 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-355  |a DE-945  |a DE-M49  |a DE-739  |a DE-11  |a DE-1049  |a DE-898 
050 0 |a QA76.9.D343 
082 0 |a 006.3/12  |2 23 
084 |a CM 4000  |0 (DE-625)18951:  |2 rvk 
084 |a CM 4400  |0 (DE-625)18955:  |2 rvk 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
084 |a ST 601  |0 (DE-625)143682:  |2 rvk 
084 |a MAT 620f  |2 stub 
084 |a DAT 307f  |2 stub 
100 1 |a Baumer, Benjamin S.  |e Verfasser  |4 aut 
245 1 0 |a Modern data science with R  |c Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton 
264 1 |a Boca Raton ; London ; New York  |b CRC Press  |c [2017] 
264 4 |c © 2017 
300 |a xxvi, 551 Seiten  |b Illustrationen, Diagramme, Karten (farbig) 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Texts in statistical science 
650 0 7 |a Datenanalyse  |0 (DE-588)4123037-1  |2 gnd  |9 rswk-swf 
650 0 7 |a R  |g Programm  |0 (DE-588)4705956-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Datenanalyse  |0 (DE-588)4123037-1  |D s 
689 0 1 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 0 2 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 3 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 4 |a R  |g Programm  |0 (DE-588)4705956-4  |D s 
689 0 |5 DE-604 
700 1 |a Kaplan, Daniel T.  |d 1959-  |e Verfasser  |0 (DE-588)17165496X  |4 aut 
700 1 |a Horton, Nicholas J.  |e Verfasser  |0 (DE-588)1034622552  |4 aut 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029606424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029606424 

Datensatz im Suchindex

DE-BY-TUM_call_number 1002 MAT 620f 2017 B 1609
DE-BY-TUM_katkey 2277927
DE-BY-TUM_location 10
DE-BY-TUM_media_number 040008179042
_version_ 1820898099539738624
adam_text Contents List of Tables xv List of Figures xvii Preface xxiii I Introduction to Data Science 1 1 Prologue: Why data science? 3 1.1 What is data science?..................................................... 4 1.2 Case study: The evolution of sabermetrics ................................ 6 1.3 Datasets.................................................................. 7 1.4 Further resources........................................................ 8 2 Data visualization 9 2.1 The 2012 federal election cycle.......................................... 9 2.1.1 Are these two groups different?.................................... 10 2.1.2 Graphing variation................................................. 11 2.1.3 Examining relationships among variables ........................... 12 2.1.4 Networks......................................................... 13 2.2 Composing data graphics.................................................. 14 2.2.1 A taxonomy for data graphics....................................... 14 2.2.2 Color ......................................................... 19 2.2.3 Dissecting data graphics........................................... 20 2.3 Importance of data graphics: Challenger ................................. 23 2.4 . Creating effective presentations....................................... 27 2.5 The wider world of data visualization.................................... 28 2.6 Further resources...................................................... 30 2.7 Exercises........ ..................................................... 30 3 A grammar for graphics 33 3.1 A grammar for data graphics.............................................. 33 3.1.1 Aesthetics......................................................... 34 3.1.2 Scale.............................................................. 37 3.1.3 Guides............................................................. 38 3.1.4 Facets............................................................ 38 3.1.5 Layers............................................................. 38 3.2 Canonical data graphics in R............................................. 39 3.2.1 Univariate displays................................................ 39 vii viii CONTENTS 3.2.2 Multivariate displays........................................... 43 3.2.3 Maps ............................................................. 48 3.2.4 Networks.......................................................... 48 3.3 Extended example: Historical baby names.................................. 48 3.3.1 Percentage of people alive today.................................. 50 3.3.2 Most common women’s names ........................................ 56 3.4 Further resources........................................................ 58 3.5 Exercises................................................................ 58 4 Data wrangling 63 4.1 A grammar for data wrangling............................................. 63 4.1.1 select() and f liter()............................................ 63 4.1.2 mutateQ and rename().............................................. 66 4.1.3 arrange()......................................................... 69 4.1.4 summarize() with group_by()....................................... 70 4.2 Extended example: Ben’s time with the Mets............................... 72 4.3 Combining multiple tables ............................................... 79 4.3.1 inner_join()...................................................... 79 4.3.2 leit_join() ...................................................... 81 4.4 Extended example: Manny Ramirez.......................................... 82 4.5 Further resources........................................................ 88 4.6 Exercises................................................................ 88 5 Tidy data and iteration 91 5.1 Tidy data................................................................ 91 5.1.1 Motivation........................................................ 91 5.1.2 What are tidy data?............................................... 93 5.2 Reshaping data........................................................... 98 5.2.1 Data verbs for converting wide to narrow and vice versa.......... 100 5.2.2 Spreading........................................................ 100 5.2.3 Gathering........................................................ 101 5.2.4 Example: Gender-neutral names.................................... 101 5.3 Naming conventions...................................................... 103 5.4 Automation and iteration................................................ 104 5.4.1 Vectorized operations ........................................... 104 5.4.2 The apply() family of functions ................................. 106 5.4.3 Iteration over subgroups with dplyr: : do()...................... 110 5.4.4 Iteration with mosaic: :do ...................................... 113 5.5 Data intake............................................................. 116 5.5.1 Data-table friendly formats...................................... 116 5.5.2 APIs............................................................. 120 5.5.3 Cleaning data.................................................... 120 5.5.4 Example: Japanese nuclear reactors............................... 126 5.6 Further resources....................................................... 127 5.7 Exercises............................................................... 128 6 Professional Ethics 131 6.1 Introduction............................................................ 131 6.2 Truthful falsehoods .................................................... 131 6.3 Some settings for professional ethics................................... 134 6.3.1 The chief executive officer...................................... 134 CONTENTS ix 6.3.2 Employment discrimination........................................... 134 6.3.3 Data scraping....................................................... 135 6.3.4 Reproducible spreadsheet analysis................................... 135 6.3.5 Drug dangers........................................................ 135 6.3.6 Legal negotiations.................................................. 136 6.4 Some principles to guide ethical action.................................... 136 6.4.1 Applying the precepts............................................... 137 6.5 Data and disclosure........................................................ 140 6.5.1 Reidentification and disclosure avoidance .......................... 140 6.5.2 Safe data storage................................................... 141 6.5.3 Data scraping and terms of use...................................... 141 6.6 Reproducibility........................................................... 142 6.6.1 Example: Erroneous data merging .................................... 142 6.7 Professional guidelines for ethical conduct................................ 143 6.8 Ethics, collectively....................................................... 143 6.9 Further resources.......................................................... 144 6.10 Exercises................................................................. 144 II Statistics and Modeling 147 7 Statistical foundations 149 7.1 Samples and populations.................................................... 149 7.2 Sample statistics.......................................................... 152 7.3 The bootstrap.............................................................. 155 7.4 Outliers................................................................... 157 7.5 Statistical models: Explaining variation................................... 159 7.6 Confounding and accounting for other factors............................... 162 7.7 The perils of p-values..................................................... 165 7.8 Further resources.......................................................... 167 7.9 Exercises.................................................................. 168 8 Statistical learning and predictive analytics 171 8.1 Supervised learning........................................................ 172 8.2 Classifiers................................................................ 173 8.2.1 Decision trees...................................................... 173 8.2.2 Example: High-earners in the 1994 United States Census.............. 174 8.2.3 Tuning parameters................................................... 180 8.2.4 Random forests...................................................... 181 8.2.5 Nearest neighbor.................................................... 182 8.2.6 Naive Bayes......................................................... 183 8.2.7 Artificial neural networks.......................................... 185 8.3 Ensemble methods........................................................... 186 8.4 Evaluating models.......................................................... 188 8.4.1 Cross-validation ................................................... 188 8.4.2 Measuring prediction error ......................................... 189 8.4.3 Confusion matrix.................................................... 189 8.4.4 ROC curves.......................................................... 189 8.4.5 Bias-variance trade-off............................................. 192 8.4.6 Example: Evaluation of income models ............................... 192 8.5 Extended example: Who has diabetes? ....................................... 196 X CONTENTS 8.6 Regularization......................................................... 201 8.7 Further resources..................................................... 201 8.8 Exercises............................................................. 201 9 Unsupervised learning 205 9.1 Clustering............................................................. 205 9.1.1 Hierarchical clustering.......................................... 206 9.1.2 fc-means......................................................... 210 9.2 Dimension reduction.................................................... 211 9.2.1 Intuitive approaches............................................. 212 9.2.2 Singular value decomposition..................................... 213 9.3 Further resources...................................................... 218 9.4 Exercises.............................................................. 218 10 Simulation 221 10.1 Reasoning in reverse.................................................. 221 10.2 Extended example: Grouping cancers................................... 222 10.3 Randomizing functions ................................................ 223 10.4 Simulating variability................................................ 225 10.4.1 The partially planned rendezvous................................ 225 10.4.2 The jobs report................................................. 227 10.4.3 Restaurant health and sanitation grades......................... 228 10.5 Simulating a complex system........................................... 231 10.6 Random networks....................................................... 233 10.7 Key principles of simulation.......................................... 233 10.8 Further resources..................................................... 235 10.9 Exercises............................................................. 236 III Topics in Data Science 241 11 Interactive data graphics 243 11.1 Rich Web content using D3.js and htmlwidgets.......................... 243 11.1.1 Leaflet......................................................... 244 11.1.2 Plot.ly......................................................... 244 11.1.3 DataTables...................................................... 244 11.1.4 dygraphs ....................................................... 246 11.1.5 streamgraphs.................................................... 246 11.2 Dynamic visualization using ggvis..................................... 246 11.3 Interactive Web apps with Shiny....................................... 247 11.4 Further customization................................................. 250 11.5 Extended example: Hot dog eating...................................... 254 11.6 Further resources..................................................... 258 11.7 Exercises............................................................. 258 12 Database querying using SQL 261 12.1 From dplyr to SQL..................................................... 261 12.2 Flat-file databases................................................... 265 12.3 The SQL universe...................................................... 266 12.4 The SQL data manipulation language.................................... 267 12.4.1 SELECT. . .FROM................................................. 270 CONTENTS xi 12.4.2 WHERE.............................................................. 272 12.4.3 GROUP BY........................................................... 275 12.4.4 ORDER BY........................................................... 277 12.4.5 HAVING ............................................................ 278 12.4.6 LIMIT.............................................................. 280 12.4.7 JOIN............................................................... 281 12.4.8 UNION.............................................................. 286 12.4.9 Subqueries ........................................................ 287 12.5 Extended example: FiveThirtyEight flights................................. 289 12.6 SQL vs. R ................................................................ 298 12.7 Further resources......................................................... 298 12.8 Exercises................................................................. 298 13 Database administration 301 13.1 Constructing efficient SQL databases...................................... 301 13.1.1 Creating new databases............................................. 301 13.1.2 CREATE TABLE....................................................... 302 13.1.3 Keys............................................................... 303 13.1.4 Indices............................................................ 304 13.1.5 EXPLAIN............................................................ 306 13.1.6 Partitioning....................................................... 308 13.2 Changing SQL data......................................................... 308 13.2.1 UPDATE ............................................................ 308 13.2.2 INSERT ............................................................ 309 13.2.3 LOAD DATA ......................................................... 309 13.3 Extended example: Building a database..................................... 309 13.3.1 Extract............................................................ 310 13.3.2 Transform.......................................................... 310 13.3.3 Load into MySQL database........................................ 310 13.4 Scalability .............................................................. 314 13.5 Further resources......................................................... 314 13.6 Exercises................................................................. 314 14 Working with spatial data 317 14.1 Motivation: What’s so great about spatial data?........................... 317 14.2 Spatial data structures .................................................. 319 14.3 Making maps............................................................... 322 14.3.1 Static maps with ggmap............................................. 322 14.3.2 Projections........................................................ 324 14.3.3 Geocoding, routes, and distances................................... 330 14.3.4 Dynamic maps with leaf let......................................... 332 14.4 Extended example: Congressional districts ................................ 333 14.4.1 Election results................................................... 334 14.4.2 Congressional districts............................................ 336 14.4.3 Putting it all together............................................ 338 14.4.4 Using ggmap....................................................... 340 14.4.5 Using leaflet..................................................... 343 14.5 Effective maps: How (not) to lie.......................................... 343 14.6 Extended example: Historical airline route maps........................... 345 14.6.1 Using ggmap....................................................... 346 14.6.2 Using leaflet..................................................... 347 xii CONTENTS 14.7 Projecting polygons................................................. 349 14.8 Playing well with others............................................ 351 14.9 Further resources................................................... 352 14.10 Exercises.......................................................... 352 15 Text as data 355 15.1 Tools for working with text......................................... 355 15.1.1 Regular՝ expressions using Macbeth............................ 355 15.1.2 Example: Life and death in Macbeth............................ 359 15.2 Analyzing textual data.............................................. 360 15.2.1 Corpora......................................................... 364 15.2.2 Word clouds .................................................. 365 15.2.3 Document term matrices........................................ 365 15.3 Ingesting text...................................................... 367 15.3.1 Example: Scraping the songs of the Beatles.................... 367 15.3.2 Scraping data from Twitter...................................... 369 15.4 Further resources................................................... 374 15.5 Exercises........................................................... 374 16 Network science 377 16.1 Introduction to network science....................................... 377 16.1.1 Definitions .................................................... 377 16.1.2 A brief history of network science.............................. 378 16.2 Extended example: Six degrees of Kristen Stewart...................... 382 16.2.1 Collecting Hollywood data....................................... 382 16.2.2 Building the Hollywood network.................................. 384 16.2.3 Building a Kristen Stewart oracle............................... 387 16.3 PageRank.............................................................. 390 16.4 Extended example: 1996 men’s college basketball..................... 391 16.5 Further resources..................................................... 398 16.6 Exercises............................................................. 398 17 Epilogue: Towards “big data” 401 17.1 Notions of big data .................................................. 401 17.2 Tools for bigger data................................................. 403 17.2.1 Data and memory structures for big data......................... 403 17.2.2 Compilation..................................................... 404 17.2.3 Parallel and distributed computing.............................. 404 17.2.4 Alternatives to SQL............................................. 411 17.3 Alternatives to R..................................................... 413 17.4 Closing thoughts...................................................... 413 17.5 Further resources..................................................... 413 IV Appendices 415 A Packages used in this book 417 A.l The rnclsr package..................................................... 417 A.2 The etl package suite.................................................. 417 A.3 Other packages......................................................... 418 A.4 Further resources...................................................... 420 CONTENTS xiii B Introduction to R and RStudio 421 B.l Installation............................................................ 421 B. 1.1 Installation under Windows....................................... 422 B. 1.2 Installation under Mac OS X...................................... 422 B. 1.3 Installation under Linux......................................... 422 B.1.4 RStudio............................................................ 422 B.2 Running RStudio and sample session...................................... 422 B.3 Learning R.............................................................. 424 B.3.1 Getting help ...................................................... 424 B.3.2 swirl.............................................................. 426 B.4 Fundamental structures and objects...................................... 427 B.4.1 Objects and vectors................................................ 427 B.4.2 Operators.......................................................... 428 B.4.3 Lists.............................................................. 429 B. 4.4 Matrices.......................................................... 429 B.4.5 Dataframes......................................................... 430 B.4.6 Attributes and classes............................................. 431 B.4.7 Options............................................................ 434 B. 4.8 Functions......................................................... 434 B.5 Add-ons: Packages....................................................... 435 B.5.1 Introduction to packages........................................... 435 B.5.2 CRAN task views ................................................... 436 B.5.3 Session information................................................ 436 B.5.4 Packages and name conflicts....................................... 438 B.5.5 Maintaining packages .............................................. 438 B.5.6 Installed libraries and packages................................... 438 B.6 Further resources....................................................... 439 B. 7 Exercises............................................................... 439 C Algorithmic thinking 443 C. l Introduction............................................................ 443 C.2 Simple example.......................................................... 443 C.3 Extended example: Law of large numbers.................................. 446 C.4 Non-standard evaluation ................................................ 448 C.5 Debugging and defensive coding.......................................... 452 C.6 Further resources....................................................... 453 C. 7 Exercises............................................................... 454 D Reproducible analysis and workflow 455 D. l Scriptable statistical computing ....................................... 456 D.2 Reproducible analysis with R Markdown................................... 456 D.3 Projects and version control............................................ 459 D.4 Further resources....................................................... 459 D. 5 Exercises............................................................... 461 E Regression modeling 465 E. l Simple linear regression................................................ 465 E.1.1 Motivating example: Modeling usage of a rail trail.............. 466 E.l.2 Model visualization................................................ 467 E.1.3 Measuring the strength of fit..................................... 467 E.1.4 Categorical explanatory variables.................................. 469 xiv CONTENTS E.2 Multiple regression................................................... 470 E.2.1 Parallel slopes: Multiple regression with a categorical variable........................................................ 470 E.2.2 Parallel planes: Multiple regression with a second quantitative variable........................................... 471 E.2.3 Non-parallel slopes: Multiple regression with interaction........ 472 E. 2.4 Modelling non-linear relationships............................. 472 E.3 Inference for regression.............................................. 474 E.4 Assumptions underlying regression..................................... 475 E.5 Logistic regression................................................. 477 E.6 Further resources . .................................................. 481 E. 7 Exercises........................................................... 482 F Setting up a database server 487 F. l SQLite ............................................................... 487 F.2 MySQL................................................................. 488 F. 2.1 Installation................................................... 488 F.2.2 Access........................................................... 488 F.2.3 Running scripts from the command line............................ 491 F.3 PostgreSQL............................................................ 491 F.4 Connecting to SQL .................................................. 492 F.4.1 The command line client.......................................... 492 F.4.2 GUIs............................................................. 492 F.4.3 R and RStudio ................................................... 492 F.4.4 Load into SQLite database........................................ 497 Bibliography 499 Indices 513 Subject index.............................................................. 514 R index.................................................................... 543
any_adam_object 1
author Baumer, Benjamin S.
Kaplan, Daniel T. 1959-
Horton, Nicholas J.
author_GND (DE-588)17165496X
(DE-588)1034622552
author_facet Baumer, Benjamin S.
Kaplan, Daniel T. 1959-
Horton, Nicholas J.
author_role aut
aut
aut
author_sort Baumer, Benjamin S.
author_variant b s b bs bsb
d t k dt dtk
n j h nj njh
building Verbundindex
bvnumber BV044199822
callnumber-first Q - Science
callnumber-label QA76
callnumber-raw QA76.9.D343
callnumber-search QA76.9.D343
callnumber-sort QA 276.9 D343
callnumber-subject QA - Mathematics
classification_rvk CM 4000
CM 4400
ST 250
ST 530
ST 601
classification_tum MAT 620f
DAT 307f
ctrlnum (OCoLC)974526621
(DE-599)BVBBV044199822
dewey-full 006.3/12
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/12
dewey-search 006.3/12
dewey-sort 16.3 212
dewey-tens 000 - Computer science, information, general works
discipline Informatik
Psychologie
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02397nam a2200589 c 4500</leader><controlfield tag="001">BV044199822</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171211 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170224s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016042514</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498724487</subfield><subfield code="c">Pack book and ebook</subfield><subfield code="9">978-1-4987-2448-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)974526621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044199822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4400</subfield><subfield code="0">(DE-625)18955:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 307f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baumer, Benjamin S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern data science with R</subfield><subfield code="c">Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 551 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten (farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in statistical science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaplan, Daniel T.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)17165496X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horton, Nicholas J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1034622552</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029606424&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029606424</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV044199822
illustrated Illustrated
indexdate 2024-12-24T05:52:26Z
institution BVB
isbn 9781498724487
language English
lccn 016042514
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029606424
oclc_num 974526621
open_access_boolean
owner DE-355
DE-BY-UBR
DE-945
DE-M49
DE-BY-TUM
DE-739
DE-11
DE-1049
DE-898
DE-BY-UBR
owner_facet DE-355
DE-BY-UBR
DE-945
DE-M49
DE-BY-TUM
DE-739
DE-11
DE-1049
DE-898
DE-BY-UBR
physical xxvi, 551 Seiten Illustrationen, Diagramme, Karten (farbig)
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher CRC Press
record_format marc
series2 Texts in statistical science
spellingShingle Baumer, Benjamin S.
Kaplan, Daniel T. 1959-
Horton, Nicholas J.
Modern data science with R
Datenanalyse (DE-588)4123037-1 gnd
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
Data Mining (DE-588)4428654-5 gnd
Big Data (DE-588)4802620-7 gnd
subject_GND (DE-588)4123037-1
(DE-588)4705956-4
(DE-588)4056995-0
(DE-588)4428654-5
(DE-588)4802620-7
(DE-588)4123623-3
title Modern data science with R
title_auth Modern data science with R
title_exact_search Modern data science with R
title_full Modern data science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton
title_fullStr Modern data science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton
title_full_unstemmed Modern data science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton
title_short Modern data science with R
title_sort modern data science with r
topic Datenanalyse (DE-588)4123037-1 gnd
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
Data Mining (DE-588)4428654-5 gnd
Big Data (DE-588)4802620-7 gnd
topic_facet Datenanalyse
R Programm
Statistik
Data Mining
Big Data
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029606424&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT baumerbenjamins moderndatasciencewithr
AT kaplandanielt moderndatasciencewithr
AT hortonnicholasj moderndatasciencewithr