Discriminant equations in diophantine number theory

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Evertse, Jan Hendrik 1958- (VerfasserIn), Győry, Kálmán 1940- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2017
Schriftenreihe:New mathematical monographs 32
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV044019481
003 DE-604
005 20170918
007 t|
008 170130s2017 xx |||| 00||| eng d
020 |a 9781107097612  |9 978-1-107-09761-2 
035 |a (OCoLC)971060773 
035 |a (DE-599)HBZHT019156671 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-703 
100 1 |a Evertse, Jan Hendrik  |d 1958-  |e Verfasser  |0 (DE-588)141300558  |4 aut 
245 1 0 |a Discriminant equations in diophantine number theory  |c Jan-Hendrik Evertse, Leiden University, The Netherlands, Kálmán Győry, University of Debrecen, Hungary 
264 1 |a Cambridge  |b Cambridge University Press  |c 2017 
300 |a xviii, 457 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a New mathematical monographs  |v 32 
650 0 7 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Zahlentheorie  |0 (DE-588)4067277-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Zahlentheorie  |0 (DE-588)4067277-3  |D s 
689 0 1 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |D s 
689 0 |5 DE-604 
700 1 |a Győry, Kálmán  |d 1940-  |e Verfasser  |0 (DE-588)1077834187  |4 aut 
830 0 |a New mathematical monographs  |v 32  |w (DE-604)BV035420183  |9 32 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029427042&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029427042&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029427042 

Datensatz im Suchindex

_version_ 1819677840591814656
adam_text Contents Preface page xi Acknowledgments xii Summary xiii PART ONE PRELIMINARIES 1 Finite Etale Algebras over Fields 3 1.1 Terminology for Rings and Algebras 3 1.2 Finite Field Extensions 4 1.3 Basic Facts on Finite Etale Algebras over Fields 6 1A Resultants and Discriminants of Polynomials 9 1.5 Characteristic Polynomial, Trace, Norm, Discriminant 11 1.6 Integral Elements and Orders 15 2 Dedekind Domains 17 2.1 Definitions 17 2.2 Ideal Theory of Dedekind Domains 18 2.3 Discrete Valuations 20 2.4 Local ization 21 2.5 Integral Closure in Finite Field Extensions 21 2.6 Extensions of Discrete Valuations 22 2.7 Norms of Ideals 24 2.8 Discriminant and Different 25 2.9 Lattices over Dedekind Domains 27 2.10 Discriminants of Lattices of Etale Algebras 30 3 Algebraic Number Fields 34 3.1 Definitions and Basic Results 34 3.1.1 Absolute Norm of an Ideal 34 v 35 36 37 39 41 44 48 50 52 56 58 60 60 61 64 66 73 74 76 78 80 80 83 85 86 87 89 92 94 104 Contents ЗЛ .2 Discriminant, Class Number, Unit Group and Regulator 3.1.3 Explicit Estimates 3.2 Absolute Values: Generalities 3.3 Absolute Values and Places on Number Fields 3.4 5-integers, 5-units and S-norm 3.5 Heights and Houses 3.6 Estimates for Units and 5-units 3.7 Effective Computations in Number Fields and Étale Algebras 3.7.1 Algebraic Number Fields 3.7.2 Relative Extensions and Finite Étale Algebras Tools from the Theory of Unit Equations 4.1 Effective Results over Number Fields 4.1.1 Equations in Units of Rings of Integers 4.1.2 Equations with Unknowns from a Finitely Generated Multiplicative Group 4.2 Effective Results over Finitely Generated Domains 4.3 Ineffective Results, Bounds for the Number of Solutions PART TWO MONIC POLYNOMIALS AND INTEGRAL ELEMENTS OF GIVEN DISCRIMINANT, MONOGENIC ORDERS Basic Finiteness Theorems 5.1 Basic Facts on Finitely Generated Domains 5.2 Discriminant Forms and Index Forms 5.3 Monogenic Orders, Power Bases, Indices 5.4 Finiteness Results 5.4.1 Discriminant Equations for Monic Polynomials 5.4.2 Discriminant Equations for Integral Elements in Étale Algebras 5.4.3 Discriminant Form and Index Form Equations 5.4.4 Consequences for Monogenic Orders Effective Results over Z 6.1 Discriminant Form and Index Form Equations 6.2 Applications to Integers in a Number Field 6.3 Proofs 6.4 Algebraic Integers of Arbitrary Degree Contents vii 6.5 Proofs 106 6.6 Monic Polynomials of Given Discriminant 108 6.7 Proofs 109 6.8 Notes 113 6.8.1 Some Related Results 113 6.8.2 Generalizations over Z 114 6.8.3 Other Applications 114 7 Algorithmic Resolution of Discriminant Form and Index Form Equations 117 7.1 Solving Discriminant Form and Index Form Equations via Unit Equations, A General Approach 118 7.1.1 Quintic Number Fields 121 7.1.2 Examples 133 7.2 Solving Discriminant Form and Index Form Equations via Thue Equations 137 7.2.1 Cubic Number Fields 138 7.2.2 Quartic Number Fields 138 7.2.3 Examples 142 7.3 The Solvability of Index Equations in Various Special Number Fields 145 7.4 Notes 146 8 Effective Results over the 5-integers of a Number Field 148 8.1 Results over Zs 149 8.2 Monic Polynomials with 5-integral Coefficients 152 8.3 Proofs 157 8.4 Integral Elements over Rings of 5-integers 172 8.4.1 Integral Elements in Etale Algebras 172 8.4.2 Integral Elements in Number Fields 178 8.4.3 Algebraic Integers of Given Degree 179 8.5 Proofs 182 8.6 Notes 191 8.6.1 Historical Remarks 191 8.6.2 Generalizations and Analogues 192 8.6.3 The Existence of Relative Power Integral Bases 195 8.6.4 Other Applications 195 9 The Number of Solutions of Discriminant Equations 196 9.1 Results over Z 197 9.2 Results over the 5-integers of a Number Field 200 Contents viii 93 Proof of Theorem 9.2.1 202 9.4 Proof of Theorem 9.2.2 205 9.5 Three Times Monogenic Orders over Finitely Generated Domains 209 9.6 Notes 218 10 Effective Results over Finitely Generated Domains 222 10.1 Statements of the Results 223 10.1.1 Results for General Domains 224 10.1.2 A Special Class of Integral Domains 226 10.2 The Main Proposition 228 10.3 Rank Estimates for Unit Groups 229 10.4 Proofs of Theorems 10.1.1 and 10.1.2 231 10.5 Proofs of Theorem 10.1.3 and Corollary 10.1.4 236 10.6 Proofs of the Results from Subsection 10.1.2 239 10.7 Supplement: Effective Computations in Finitely Generated Domains 245 10.7.1 Finitely Generated Fields over Q 245 10.7.2 Finitely Generated Domains over Z 249 10.8 Notes 255 11 Further Applications 257 11.1 Number Systems and Power Integral Bases 257 11.1.1 Canonical Number Systems in Algebraic Number Fields 258 11.1.2 Proofs 259 11.1.3 Notes 266 11.2 The Number of Generators of an G^-order 268 11.2.1 Notes 271 PART THREE BINARY FORMS OF GIVEN DISCRIMINANT 12 A Brief Overview of the Basic Finiteness Theorems 275 13 Reduction Theory of Binary Forms 278 13.1 Reduction of Binary Forms over Z 279 13.2 Geometry of Numbers over the S-integers 284 13.3 Estimates for Polynomials 290 13.4 Reduction of Binary Forms over the S-integers 293 14 Effective Results for Binary Forms of Given Discriminant 302 14.1 Results over Z 303 Contents ix 14.2 Results over the S-integers of a Number Field 305 14.3 Applications 307 14.4 Proofs of the Results from Section 14.2 311 Î4.5 Proofs of the Results from Section 14.3 323 14.6 Bounding the Degree of Binary Forms over Z of Given Discriminant 327 14.7 A Conséquence for Monic Polynomials 330 14.8 Relation between Binary Forms of Given Discriminant and Unit Equations in Two Unknowns 332 14.9 Decomposable Forms of Given Semi֊Discriminant 333 14.10 Notes 337 14.10.1 Applications to Classical Diophantine Equations 337 14.10.2 Other Applications 338 14.10.3 Practical Algorithms 338 15 Semi-effective Results for Binary Forms of Given Discriminant 339 15.1 Results 340 15.2 The Basic Proposition 342 15.3 Construction of the Tuple 343 15.4 Proof of the Basic Proposition 346 15.5 Notes 356 16 Invariant Orders of Binary Forms 358 16.1 Algebras Associated with a Binary Form 359 16.2 Définition of the Invariant Order 361 16.3 Binary Cubic Forms and Cubic Orders 369 17 On the Number of Equivalence Classes of Binary Forms of Given Discriminant 371 17.1 Results over Z 372 17.2 Results over the S-integers of a Number Field 374 17.3 £2-forms 376 17.4 Local-to-Global Results 378 17.5 Lower Bounds 384 17.6 Counting Equivalence Classes over Discrète Valuation Domains 386 17.7 Counting Equivalence Classes over Number Fields 395 17.8 Proofs of the Theorems 401 17.9 Finiteness Results over Finitely Generated Domains 403 17.10 Notes 408 X Contents 18 Further Applications 409 18.1 Root Separation of Polynomials 409 18.1.1 Results for Polynomials over Z 410 18.1.2 Results over Number Fields 41 1 18.1.3 Proof of Theorem 18.1.5 413 18.1.4 Proof of Theorems 18. i .6 and 18.1.7 421 18.1.5 Notes 424 18.2 An Effective Proof of Shafarevich’s Conjecture for Hyperelliptic Curves 425 18.2.1 Definitions 426 18.2.2 Results 427 18.2.3 Preliminaries 429 18.2.4 Proofs 430 18.2.5 Notes 435 Glossary of Frequently Used Notation 436 References 440 Index 454 Diophantine number theory is an active area that has seen tremendous progress over the past century. An important role in this theory is played by discriminant equations, a class of Diophantine equations with close ties to algebraic number theory, Diophantine approximation and Diophantine geometry. Discriminant equations are about univariate polynomials or binary forms of given discriminant, considered over various types of integral domains. This book is the first comprehensive account of discriminant equations and their applications. It brings together many aspects, including effective results over number fields, effective results over finitely generated domains, practical algorithms for solving concrete equations, estimates on the number of solutions, applications to algebraic integers of given discriminant, power integral bases, canonical number systems, algorithms for finding a minimal set of generators of an order of a number field, root separation of polynomials and reduction of hyperelliptic curves. The authors’ previous title, Unit Equations in Diophantine Number Theory, laid the groundwork by presenting important results that are used as tools in the present book. This material is briefly summarized in the introductory chapters along with the necessary basic algebra and algebraic number theory, making the book accessible to experts and young researchers alike. x x The Neiu Mathematical Monographs are dedicated to books containing an in-depth discussion of a substantial area of mathematics. They bring the reader to the forefront of research by presenting a synthesis of the key results, while also acknowledging the wider mathematical context. As well as being detailed, they are readable and contain the motivational material necessary for those entering a field. For established researchers they are a valuable resource. Books are edited and typeset to a high standard and published in hardback. Jan-Hendrik Evertse is a number theorist, working at the Mathematical Institute of Leiden University. He has written several influential papers in Diophantine number theory. Kálmán Győry is Professor Emeritus at the University of Debrecen, a member of the Hungarian Academy of Sciences and a well-known researcher in Diophantine number theory. Cambridge UNIVERSITY PRESS www.cambridge.org ISBN 978-1-107-09761-2
any_adam_object 1
author Evertse, Jan Hendrik 1958-
Győry, Kálmán 1940-
author_GND (DE-588)141300558
(DE-588)1077834187
author_facet Evertse, Jan Hendrik 1958-
Győry, Kálmán 1940-
author_role aut
aut
author_sort Evertse, Jan Hendrik 1958-
author_variant j h e jh jhe
k g kg
building Verbundindex
bvnumber BV044019481
ctrlnum (OCoLC)971060773
(DE-599)HBZHT019156671
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01884nam a2200373 cb4500</leader><controlfield tag="001">BV044019481</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">170130s2017 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107097612</subfield><subfield code="9">978-1-107-09761-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)971060773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT019156671</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Evertse, Jan Hendrik</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141300558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discriminant equations in diophantine number theory</subfield><subfield code="c">Jan-Hendrik Evertse, Leiden University, The Netherlands, Kálmán Győry, University of Debrecen, Hungary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 457 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">32</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Győry, Kálmán</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077834187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV035420183</subfield><subfield code="9">32</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029427042&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029427042&amp;sequence=000002&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029427042</subfield></datafield></record></collection>
id DE-604.BV044019481
illustrated Not Illustrated
indexdate 2024-12-24T05:40:14Z
institution BVB
isbn 9781107097612
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029427042
oclc_num 971060773
open_access_boolean
owner DE-703
owner_facet DE-703
physical xviii, 457 Seiten
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher Cambridge University Press
record_format marc
series New mathematical monographs
series2 New mathematical monographs
spellingShingle Evertse, Jan Hendrik 1958-
Győry, Kálmán 1940-
Discriminant equations in diophantine number theory
New mathematical monographs
Diophantische Gleichung (DE-588)4012386-8 gnd
Zahlentheorie (DE-588)4067277-3 gnd
subject_GND (DE-588)4012386-8
(DE-588)4067277-3
title Discriminant equations in diophantine number theory
title_auth Discriminant equations in diophantine number theory
title_exact_search Discriminant equations in diophantine number theory
title_full Discriminant equations in diophantine number theory Jan-Hendrik Evertse, Leiden University, The Netherlands, Kálmán Győry, University of Debrecen, Hungary
title_fullStr Discriminant equations in diophantine number theory Jan-Hendrik Evertse, Leiden University, The Netherlands, Kálmán Győry, University of Debrecen, Hungary
title_full_unstemmed Discriminant equations in diophantine number theory Jan-Hendrik Evertse, Leiden University, The Netherlands, Kálmán Győry, University of Debrecen, Hungary
title_short Discriminant equations in diophantine number theory
title_sort discriminant equations in diophantine number theory
topic Diophantische Gleichung (DE-588)4012386-8 gnd
Zahlentheorie (DE-588)4067277-3 gnd
topic_facet Diophantische Gleichung
Zahlentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029427042&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029427042&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV035420183
work_keys_str_mv AT evertsejanhendrik discriminantequationsindiophantinenumbertheory
AT gyorykalman discriminantequationsindiophantinenumbertheory