Concentration of measure for the analysis of randomized algorithms

Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dubhashi, Devdatt (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2009
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV043945415
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2009 |||| o||u| ||||||eng d
020 |a 9780511581274  |c Online  |9 978-0-511-58127-4 
024 7 |a 10.1017/CBO9780511581274  |2 doi 
035 |a (ZDB-20-CBO)CR9780511581274 
035 |a (OCoLC)992858051 
035 |a (DE-599)BVBBV043945415 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 518/.1  |2 22 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a ST 134  |0 (DE-625)143590:  |2 rvk 
100 1 |a Dubhashi, Devdatt  |e Verfasser  |4 aut 
245 1 0 |a Concentration of measure for the analysis of randomized algorithms  |c Devdatt Dubhashi, Alessandro Panconesi 
264 1 |a Cambridge  |b Cambridge University Press  |c 2009 
300 |a 1 online resource (xiv, 196 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds 
520 |a Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians 
650 4 |a Random variables 
650 4 |a Distribution (Probability theory) 
650 4 |a Limit theorems (Probability theory) 
650 4 |a Algorithms 
650 0 7 |a Wahrscheinlichkeitstheorie  |0 (DE-588)4079013-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Zufallsvariable  |0 (DE-588)4129514-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Algorithmus  |0 (DE-588)4001183-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Wahrscheinlichkeitstheorie  |0 (DE-588)4079013-7  |D s 
689 0 1 |a Algorithmus  |0 (DE-588)4001183-5  |D s 
689 0 2 |a Zufallsvariable  |0 (DE-588)4129514-6  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Panconesi, Alessandro  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-88427-3 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-1-107-60660-9 
856 4 0 |u https://doi.org/10.1017/CBO9780511581274  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029354386 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1017/CBO9780511581274  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511581274  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176891640283136
any_adam_object
author Dubhashi, Devdatt
author_facet Dubhashi, Devdatt
author_role aut
author_sort Dubhashi, Devdatt
author_variant d d dd
building Verbundindex
bvnumber BV043945415
classification_rvk SK 820
ST 134
collection ZDB-20-CBO
contents Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds
ctrlnum (ZDB-20-CBO)CR9780511581274
(OCoLC)992858051
(DE-599)BVBBV043945415
dewey-full 518/.1
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518/.1
dewey-search 518/.1
dewey-sort 3518 11
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
doi_str_mv 10.1017/CBO9780511581274
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04149nmm a2200577zc 4500</leader><controlfield tag="001">BV043945415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511581274</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-58127-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511581274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511581274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992858051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubhashi, Devdatt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concentration of measure for the analysis of randomized algorithms</subfield><subfield code="c">Devdatt Dubhashi, Alessandro Panconesi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 196 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit theorems (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panconesi, Alessandro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-88427-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-60660-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354386</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043945415
illustrated Not Illustrated
indexdate 2024-07-10T07:39:23Z
institution BVB
isbn 9780511581274
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029354386
oclc_num 992858051
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xiv, 196 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Cambridge University Press
record_format marc
spelling Dubhashi, Devdatt Verfasser aut
Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi
Cambridge Cambridge University Press 2009
1 online resource (xiv, 196 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians
Random variables
Distribution (Probability theory)
Limit theorems (Probability theory)
Algorithms
Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf
Zufallsvariable (DE-588)4129514-6 gnd rswk-swf
Algorithmus (DE-588)4001183-5 gnd rswk-swf
Wahrscheinlichkeitstheorie (DE-588)4079013-7 s
Algorithmus (DE-588)4001183-5 s
Zufallsvariable (DE-588)4129514-6 s
1\p DE-604
Panconesi, Alessandro Sonstige oth
Erscheint auch als Druckausgabe 978-0-521-88427-3
Erscheint auch als Druckausgabe 978-1-107-60660-9
https://doi.org/10.1017/CBO9780511581274 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Dubhashi, Devdatt
Concentration of measure for the analysis of randomized algorithms
Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds
Random variables
Distribution (Probability theory)
Limit theorems (Probability theory)
Algorithms
Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd
Zufallsvariable (DE-588)4129514-6 gnd
Algorithmus (DE-588)4001183-5 gnd
subject_GND (DE-588)4079013-7
(DE-588)4129514-6
(DE-588)4001183-5
title Concentration of measure for the analysis of randomized algorithms
title_auth Concentration of measure for the analysis of randomized algorithms
title_exact_search Concentration of measure for the analysis of randomized algorithms
title_full Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi
title_fullStr Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi
title_full_unstemmed Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi
title_short Concentration of measure for the analysis of randomized algorithms
title_sort concentration of measure for the analysis of randomized algorithms
topic Random variables
Distribution (Probability theory)
Limit theorems (Probability theory)
Algorithms
Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd
Zufallsvariable (DE-588)4129514-6 gnd
Algorithmus (DE-588)4001183-5 gnd
topic_facet Random variables
Distribution (Probability theory)
Limit theorems (Probability theory)
Algorithms
Wahrscheinlichkeitstheorie
Zufallsvariable
Algorithmus
url https://doi.org/10.1017/CBO9780511581274
work_keys_str_mv AT dubhashidevdatt concentrationofmeasurefortheanalysisofrandomizedalgorithms
AT panconesialessandro concentrationofmeasurefortheanalysisofrandomizedalgorithms