Concentration of measure for the analysis of randomized algorithms
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2009
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043945415 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2009 |||| o||u| ||||||eng d | ||
020 | |a 9780511581274 |c Online |9 978-0-511-58127-4 | ||
024 | 7 | |a 10.1017/CBO9780511581274 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511581274 | ||
035 | |a (OCoLC)992858051 | ||
035 | |a (DE-599)BVBBV043945415 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 518/.1 |2 22 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
100 | 1 | |a Dubhashi, Devdatt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Concentration of measure for the analysis of randomized algorithms |c Devdatt Dubhashi, Alessandro Panconesi |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2009 | |
300 | |a 1 online resource (xiv, 196 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds | |
520 | |a Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians | ||
650 | 4 | |a Random variables | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Limit theorems (Probability theory) | |
650 | 4 | |a Algorithms | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 2 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Panconesi, Alessandro |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-88427-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-60660-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511581274 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029354386 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511581274 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511581274 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176891640283136 |
---|---|
any_adam_object | |
author | Dubhashi, Devdatt |
author_facet | Dubhashi, Devdatt |
author_role | aut |
author_sort | Dubhashi, Devdatt |
author_variant | d d dd |
building | Verbundindex |
bvnumber | BV043945415 |
classification_rvk | SK 820 ST 134 |
collection | ZDB-20-CBO |
contents | Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds |
ctrlnum | (ZDB-20-CBO)CR9780511581274 (OCoLC)992858051 (DE-599)BVBBV043945415 |
dewey-full | 518/.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518/.1 |
dewey-search | 518/.1 |
dewey-sort | 3518 11 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
doi_str_mv | 10.1017/CBO9780511581274 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04149nmm a2200577zc 4500</leader><controlfield tag="001">BV043945415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511581274</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-58127-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511581274</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511581274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992858051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dubhashi, Devdatt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concentration of measure for the analysis of randomized algorithms</subfield><subfield code="c">Devdatt Dubhashi, Alessandro Panconesi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 196 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit theorems (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Panconesi, Alessandro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-88427-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-60660-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354386</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511581274</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043945415 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:23Z |
institution | BVB |
isbn | 9780511581274 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029354386 |
oclc_num | 992858051 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiv, 196 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Dubhashi, Devdatt Verfasser aut Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi Cambridge Cambridge University Press 2009 1 online resource (xiv, 196 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians Random variables Distribution (Probability theory) Limit theorems (Probability theory) Algorithms Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Algorithmus (DE-588)4001183-5 s Zufallsvariable (DE-588)4129514-6 s 1\p DE-604 Panconesi, Alessandro Sonstige oth Erscheint auch als Druckausgabe 978-0-521-88427-3 Erscheint auch als Druckausgabe 978-1-107-60660-9 https://doi.org/10.1017/CBO9780511581274 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dubhashi, Devdatt Concentration of measure for the analysis of randomized algorithms Chernoff-Hoeffding bounds -- Applications of the Chernoff-Hoeffding bounds -- Chernoff-Hoeffding bounds in dependent settings -- Interlude : probabilistic recurrences -- Martingales and the method of bounded differences -- The simple method of bounded differences in action -- The method of averaged bounded differences -- The method of bounded variances -- Interlude : the infamous upper tail -- Isoperimetric inequalities and concentration -- Talagrand's isoperimetric inequality -- Isoperimetric inequalities and concentration via transportation cost inequalities -- Quadratic transportation cost and Talagrand's inequality -- Log-Sobolev inequalities and concentration -- Appendix A : summary of the most useful bounds Random variables Distribution (Probability theory) Limit theorems (Probability theory) Algorithms Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Zufallsvariable (DE-588)4129514-6 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4129514-6 (DE-588)4001183-5 |
title | Concentration of measure for the analysis of randomized algorithms |
title_auth | Concentration of measure for the analysis of randomized algorithms |
title_exact_search | Concentration of measure for the analysis of randomized algorithms |
title_full | Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi |
title_fullStr | Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi |
title_full_unstemmed | Concentration of measure for the analysis of randomized algorithms Devdatt Dubhashi, Alessandro Panconesi |
title_short | Concentration of measure for the analysis of randomized algorithms |
title_sort | concentration of measure for the analysis of randomized algorithms |
topic | Random variables Distribution (Probability theory) Limit theorems (Probability theory) Algorithms Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Zufallsvariable (DE-588)4129514-6 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Random variables Distribution (Probability theory) Limit theorems (Probability theory) Algorithms Wahrscheinlichkeitstheorie Zufallsvariable Algorithmus |
url | https://doi.org/10.1017/CBO9780511581274 |
work_keys_str_mv | AT dubhashidevdatt concentrationofmeasurefortheanalysisofrandomizedalgorithms AT panconesialessandro concentrationofmeasurefortheanalysisofrandomizedalgorithms |