A mathematical tapestry demonstrating the beautiful unity of mathematics

This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hilton, Peter John 1923-2010 (VerfasserIn)
Weitere Verfasser: Donmoyer, Sylvie (IllustratorIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2010
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043945195
003 DE-604
005 20200819
007 cr|uuu---uuuuu
008 161206s2010 xx o|||| 00||| eng d
020 |a 9780511777004  |c Online  |9 978-0-511-77700-4 
024 7 |a 10.1017/CBO9780511777004  |2 doi 
035 |a (ZDB-20-CBO)CR9780511777004 
035 |a (OCoLC)967688090 
035 |a (DE-599)BVBBV043945195 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 510  |2 22 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 380  |0 (DE-625)143235:  |2 rvk 
100 1 |a Hilton, Peter John  |d 1923-2010  |e Verfasser  |0 (DE-588)115702822  |4 aut 
245 1 0 |a A mathematical tapestry  |b demonstrating the beautiful unity of mathematics  |c Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer 
264 1 |a Cambridge  |b Cambridge University Press  |c 2010 
300 |a 1 online resource (xv, 290 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Flexagons : a beginning thread -- Another thread : 1-period paper folding -- More paper folding threads : 2-period paper-folding -- A number-theory thread : folding numbers, a number trick, and some titbits -- The polyhedron thread : building some polyhedra and defining a regular polyhedron -- Constructing dipyramids and rotating rings from straight strips of triangles -- Continuing the paper-folding and number-theory threads -- A geometry and algebra thread : constructing, and using, Jennifer's puzzle -- A polyhedral geometry thread : constructing braided Platonic solids and other woven polyhedra -- Combinatorial and symmetry threads -- Some golden threads : constructing more dodecahedra -- More combinatorial threads : collapsoids -- Group theory : the faces of the trihexaflexagon -- Combinatorial and group-theoretical threads : extended face planes of the Platonic solids -- A historical thread : involving the Euler characteristic, Descartes' total angular defect, and Pólya's dream -- Tying some loose ends together : symmetry, group theory, homologues, and the Pólya enumeration theorem -- Returning to the number-theory thread : generalized quasi-order and coach theorems 
520 |a This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth 
650 4 |a Mathematik 
650 4 |a Mathematics 
650 4 |a Paper work 
650 4 |a Geometrical models 
650 4 |a Polyhedra / Models 
650 4 |a Mathematics / Study and teaching 
650 4 |a Geometry / Study and teaching 
650 4 |a Combinatorial geometry / Study and teaching 
650 4 |a Mathematical recreations 
650 0 7 |a Regelmäßiges Polygon  |0 (DE-588)4312085-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Unterhaltungsmathematik  |0 (DE-588)4124357-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Regelmäßiges Polygon  |0 (DE-588)4312085-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Unterhaltungsmathematik  |0 (DE-588)4124357-2  |D s 
689 1 |5 DE-604 
700 1 |a Pedersen, Jean  |e Sonstige  |0 (DE-588)115702997  |4 oth 
700 1 |a Donmoyer, Sylvie  |0 (DE-588)142985783  |4 ill 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-12821-6 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-76410-0 
856 4 0 |u https://doi.org/10.1017/CBO9780511777004  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029354165 
966 e |u https://doi.org/10.1017/CBO9780511777004  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511777004  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298752982155264
any_adam_object
author Hilton, Peter John 1923-2010
author2 Donmoyer, Sylvie
author2_role ill
author2_variant s d sd
author_GND (DE-588)115702822
(DE-588)115702997
(DE-588)142985783
author_facet Hilton, Peter John 1923-2010
Donmoyer, Sylvie
author_role aut
author_sort Hilton, Peter John 1923-2010
author_variant p j h pj pjh
building Verbundindex
bvnumber BV043945195
classification_rvk SK 180
SK 380
collection ZDB-20-CBO
contents Flexagons : a beginning thread -- Another thread : 1-period paper folding -- More paper folding threads : 2-period paper-folding -- A number-theory thread : folding numbers, a number trick, and some titbits -- The polyhedron thread : building some polyhedra and defining a regular polyhedron -- Constructing dipyramids and rotating rings from straight strips of triangles -- Continuing the paper-folding and number-theory threads -- A geometry and algebra thread : constructing, and using, Jennifer's puzzle -- A polyhedral geometry thread : constructing braided Platonic solids and other woven polyhedra -- Combinatorial and symmetry threads -- Some golden threads : constructing more dodecahedra -- More combinatorial threads : collapsoids -- Group theory : the faces of the trihexaflexagon -- Combinatorial and group-theoretical threads : extended face planes of the Platonic solids -- A historical thread : involving the Euler characteristic, Descartes' total angular defect, and Pólya's dream -- Tying some loose ends together : symmetry, group theory, homologues, and the Pólya enumeration theorem -- Returning to the number-theory thread : generalized quasi-order and coach theorems
ctrlnum (ZDB-20-CBO)CR9780511777004
(OCoLC)967688090
(DE-599)BVBBV043945195
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511777004
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04771nam a2200637zc 4500</leader><controlfield tag="001">BV043945195</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200819 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511777004</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-77700-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511777004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511777004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967688090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043945195</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilton, Peter John</subfield><subfield code="d">1923-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115702822</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A mathematical tapestry</subfield><subfield code="b">demonstrating the beautiful unity of mathematics</subfield><subfield code="c">Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 290 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Flexagons : a beginning thread -- Another thread : 1-period paper folding -- More paper folding threads : 2-period paper-folding -- A number-theory thread : folding numbers, a number trick, and some titbits -- The polyhedron thread : building some polyhedra and defining a regular polyhedron -- Constructing dipyramids and rotating rings from straight strips of triangles -- Continuing the paper-folding and number-theory threads -- A geometry and algebra thread : constructing, and using, Jennifer's puzzle -- A polyhedral geometry thread : constructing braided Platonic solids and other woven polyhedra -- Combinatorial and symmetry threads -- Some golden threads : constructing more dodecahedra -- More combinatorial threads : collapsoids -- Group theory : the faces of the trihexaflexagon -- Combinatorial and group-theoretical threads : extended face planes of the Platonic solids -- A historical thread : involving the Euler characteristic, Descartes' total angular defect, and Pólya's dream -- Tying some loose ends together : symmetry, group theory, homologues, and the Pólya enumeration theorem -- Returning to the number-theory thread : generalized quasi-order and coach theorems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paper work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometrical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyhedra / Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Study and teaching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry / Study and teaching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial geometry / Study and teaching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical recreations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelmäßiges Polygon</subfield><subfield code="0">(DE-588)4312085-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regelmäßiges Polygon</subfield><subfield code="0">(DE-588)4312085-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pedersen, Jean</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115702997</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Donmoyer, Sylvie</subfield><subfield code="0">(DE-588)142985783</subfield><subfield code="4">ill</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-12821-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-76410-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511777004</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029354165</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511777004</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511777004</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043945195
illustrated Not Illustrated
indexdate 2024-12-24T05:34:27Z
institution BVB
isbn 9780511777004
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029354165
oclc_num 967688090
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xv, 290 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Cambridge University Press
record_format marc
spelling Hilton, Peter John 1923-2010 Verfasser (DE-588)115702822 aut
A mathematical tapestry demonstrating the beautiful unity of mathematics Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer
Cambridge Cambridge University Press 2010
1 online resource (xv, 290 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Flexagons : a beginning thread -- Another thread : 1-period paper folding -- More paper folding threads : 2-period paper-folding -- A number-theory thread : folding numbers, a number trick, and some titbits -- The polyhedron thread : building some polyhedra and defining a regular polyhedron -- Constructing dipyramids and rotating rings from straight strips of triangles -- Continuing the paper-folding and number-theory threads -- A geometry and algebra thread : constructing, and using, Jennifer's puzzle -- A polyhedral geometry thread : constructing braided Platonic solids and other woven polyhedra -- Combinatorial and symmetry threads -- Some golden threads : constructing more dodecahedra -- More combinatorial threads : collapsoids -- Group theory : the faces of the trihexaflexagon -- Combinatorial and group-theoretical threads : extended face planes of the Platonic solids -- A historical thread : involving the Euler characteristic, Descartes' total angular defect, and Pólya's dream -- Tying some loose ends together : symmetry, group theory, homologues, and the Pólya enumeration theorem -- Returning to the number-theory thread : generalized quasi-order and coach theorems
This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth
Mathematik
Mathematics
Paper work
Geometrical models
Polyhedra / Models
Mathematics / Study and teaching
Geometry / Study and teaching
Combinatorial geometry / Study and teaching
Mathematical recreations
Regelmäßiges Polygon (DE-588)4312085-4 gnd rswk-swf
Unterhaltungsmathematik (DE-588)4124357-2 gnd rswk-swf
Regelmäßiges Polygon (DE-588)4312085-4 s
1\p DE-604
Unterhaltungsmathematik (DE-588)4124357-2 s
DE-604
Pedersen, Jean Sonstige (DE-588)115702997 oth
Donmoyer, Sylvie (DE-588)142985783 ill
Erscheint auch als Druckausgabe 978-0-521-12821-6
Erscheint auch als Druckausgabe 978-0-521-76410-0
https://doi.org/10.1017/CBO9780511777004 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Hilton, Peter John 1923-2010
A mathematical tapestry demonstrating the beautiful unity of mathematics
Flexagons : a beginning thread -- Another thread : 1-period paper folding -- More paper folding threads : 2-period paper-folding -- A number-theory thread : folding numbers, a number trick, and some titbits -- The polyhedron thread : building some polyhedra and defining a regular polyhedron -- Constructing dipyramids and rotating rings from straight strips of triangles -- Continuing the paper-folding and number-theory threads -- A geometry and algebra thread : constructing, and using, Jennifer's puzzle -- A polyhedral geometry thread : constructing braided Platonic solids and other woven polyhedra -- Combinatorial and symmetry threads -- Some golden threads : constructing more dodecahedra -- More combinatorial threads : collapsoids -- Group theory : the faces of the trihexaflexagon -- Combinatorial and group-theoretical threads : extended face planes of the Platonic solids -- A historical thread : involving the Euler characteristic, Descartes' total angular defect, and Pólya's dream -- Tying some loose ends together : symmetry, group theory, homologues, and the Pólya enumeration theorem -- Returning to the number-theory thread : generalized quasi-order and coach theorems
Mathematik
Mathematics
Paper work
Geometrical models
Polyhedra / Models
Mathematics / Study and teaching
Geometry / Study and teaching
Combinatorial geometry / Study and teaching
Mathematical recreations
Regelmäßiges Polygon (DE-588)4312085-4 gnd
Unterhaltungsmathematik (DE-588)4124357-2 gnd
subject_GND (DE-588)4312085-4
(DE-588)4124357-2
title A mathematical tapestry demonstrating the beautiful unity of mathematics
title_auth A mathematical tapestry demonstrating the beautiful unity of mathematics
title_exact_search A mathematical tapestry demonstrating the beautiful unity of mathematics
title_full A mathematical tapestry demonstrating the beautiful unity of mathematics Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer
title_fullStr A mathematical tapestry demonstrating the beautiful unity of mathematics Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer
title_full_unstemmed A mathematical tapestry demonstrating the beautiful unity of mathematics Peter Hilton, Jean Pedersen ; with illustrations by Sylvie Donmoyer
title_short A mathematical tapestry
title_sort a mathematical tapestry demonstrating the beautiful unity of mathematics
title_sub demonstrating the beautiful unity of mathematics
topic Mathematik
Mathematics
Paper work
Geometrical models
Polyhedra / Models
Mathematics / Study and teaching
Geometry / Study and teaching
Combinatorial geometry / Study and teaching
Mathematical recreations
Regelmäßiges Polygon (DE-588)4312085-4 gnd
Unterhaltungsmathematik (DE-588)4124357-2 gnd
topic_facet Mathematik
Mathematics
Paper work
Geometrical models
Polyhedra / Models
Mathematics / Study and teaching
Geometry / Study and teaching
Combinatorial geometry / Study and teaching
Mathematical recreations
Regelmäßiges Polygon
Unterhaltungsmathematik
url https://doi.org/10.1017/CBO9780511777004
work_keys_str_mv AT hiltonpeterjohn amathematicaltapestrydemonstratingthebeautifulunityofmathematics
AT pedersenjean amathematicaltapestrydemonstratingthebeautifulunityofmathematics
AT donmoyersylvie amathematicaltapestrydemonstratingthebeautifulunityofmathematics