Classical mechanics transformations, flows, integrable, and chaotic dynamics

This is an advanced 1997 text for first-year graduate students in physics and engineering taking a standard classical mechanics course. It was the first book to describe the subject in the context of the language and methods of modern nonlinear dynamics. The organising principle of the text is integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: McCauley, Joseph L. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1997
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043943465
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s1997 xx o|||| 00||| eng d
020 |a 9781139170932  |c Online  |9 978-1-139-17093-2 
024 7 |a 10.1017/CBO9781139170932  |2 doi 
035 |a (ZDB-20-CBO)CR9781139170932 
035 |a (OCoLC)992824107 
035 |a (DE-599)BVBBV043943465 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 531/.01/515352  |2 20 
084 |a UF 1000  |0 (DE-625)145552:  |2 rvk 
100 1 |a McCauley, Joseph L.  |e Verfasser  |4 aut 
245 1 0 |a Classical mechanics  |b transformations, flows, integrable, and chaotic dynamics  |c Joseph L. McCauley 
264 1 |a Cambridge  |b Cambridge University Press  |c 1997 
300 |a 1 online resource (xvii, 469 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
520 |a This is an advanced 1997 text for first-year graduate students in physics and engineering taking a standard classical mechanics course. It was the first book to describe the subject in the context of the language and methods of modern nonlinear dynamics. The organising principle of the text is integrability vs. nonintegrability. Flows in phase space and transformations are introduced early and systematically and are applied throughout the text. The standard integrable problems of elementary physics are analysed from the standpoint of flows, transformations, and integrability. This approach then allows the author to introduce most of the interesting ideas of modern nonlinear dynamics via the most elementary nonintegrable problems of Newtonian mechanics. This text will be of value to physicists and engineers taking graduate courses in classical mechanics. It will also interest specialists in nonlinear dynamics, mathematicians, engineers and system theorists 
650 4 |a Mechanics 
650 0 7 |a Mechanik  |0 (DE-588)4038168-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Mechanik  |0 (DE-588)4038168-7  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-48132-8 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-57882-0 
856 4 0 |u https://doi.org/10.1017/CBO9781139170932  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029352436 
966 e |u https://doi.org/10.1017/CBO9781139170932  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9781139170932  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298723768827904
any_adam_object
author McCauley, Joseph L.
author_facet McCauley, Joseph L.
author_role aut
author_sort McCauley, Joseph L.
author_variant j l m jl jlm
building Verbundindex
bvnumber BV043943465
classification_rvk UF 1000
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9781139170932
(OCoLC)992824107
(DE-599)BVBBV043943465
dewey-full 531/.01/515352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531/.01/515352
dewey-search 531/.01/515352
dewey-sort 3531 11 6515352
dewey-tens 530 - Physics
discipline Physik
doi_str_mv 10.1017/CBO9781139170932
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02781nam a2200457zc 4500</leader><controlfield tag="001">BV043943465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139170932</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17093-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139170932</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139170932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992824107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943465</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531/.01/515352</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCauley, Joseph L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical mechanics</subfield><subfield code="b">transformations, flows, integrable, and chaotic dynamics</subfield><subfield code="c">Joseph L. McCauley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 469 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an advanced 1997 text for first-year graduate students in physics and engineering taking a standard classical mechanics course. It was the first book to describe the subject in the context of the language and methods of modern nonlinear dynamics. The organising principle of the text is integrability vs. nonintegrability. Flows in phase space and transformations are introduced early and systematically and are applied throughout the text. The standard integrable problems of elementary physics are analysed from the standpoint of flows, transformations, and integrability. This approach then allows the author to introduce most of the interesting ideas of modern nonlinear dynamics via the most elementary nonintegrable problems of Newtonian mechanics. This text will be of value to physicists and engineers taking graduate courses in classical mechanics. It will also interest specialists in nonlinear dynamics, mathematicians, engineers and system theorists</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-48132-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-57882-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139170932</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352436</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139170932</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139170932</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043943465
illustrated Not Illustrated
indexdate 2024-12-24T05:34:04Z
institution BVB
isbn 9781139170932
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029352436
oclc_num 992824107
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xvii, 469 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Cambridge University Press
record_format marc
spelling McCauley, Joseph L. Verfasser aut
Classical mechanics transformations, flows, integrable, and chaotic dynamics Joseph L. McCauley
Cambridge Cambridge University Press 1997
1 online resource (xvii, 469 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
This is an advanced 1997 text for first-year graduate students in physics and engineering taking a standard classical mechanics course. It was the first book to describe the subject in the context of the language and methods of modern nonlinear dynamics. The organising principle of the text is integrability vs. nonintegrability. Flows in phase space and transformations are introduced early and systematically and are applied throughout the text. The standard integrable problems of elementary physics are analysed from the standpoint of flows, transformations, and integrability. This approach then allows the author to introduce most of the interesting ideas of modern nonlinear dynamics via the most elementary nonintegrable problems of Newtonian mechanics. This text will be of value to physicists and engineers taking graduate courses in classical mechanics. It will also interest specialists in nonlinear dynamics, mathematicians, engineers and system theorists
Mechanics
Mechanik (DE-588)4038168-7 gnd rswk-swf
Mechanik (DE-588)4038168-7 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-48132-8
Erscheint auch als Druckausgabe 978-0-521-57882-0
https://doi.org/10.1017/CBO9781139170932 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle McCauley, Joseph L.
Classical mechanics transformations, flows, integrable, and chaotic dynamics
Mechanics
Mechanik (DE-588)4038168-7 gnd
subject_GND (DE-588)4038168-7
title Classical mechanics transformations, flows, integrable, and chaotic dynamics
title_auth Classical mechanics transformations, flows, integrable, and chaotic dynamics
title_exact_search Classical mechanics transformations, flows, integrable, and chaotic dynamics
title_full Classical mechanics transformations, flows, integrable, and chaotic dynamics Joseph L. McCauley
title_fullStr Classical mechanics transformations, flows, integrable, and chaotic dynamics Joseph L. McCauley
title_full_unstemmed Classical mechanics transformations, flows, integrable, and chaotic dynamics Joseph L. McCauley
title_short Classical mechanics
title_sort classical mechanics transformations flows integrable and chaotic dynamics
title_sub transformations, flows, integrable, and chaotic dynamics
topic Mechanics
Mechanik (DE-588)4038168-7 gnd
topic_facet Mechanics
Mechanik
url https://doi.org/10.1017/CBO9781139170932
work_keys_str_mv AT mccauleyjosephl classicalmechanicstransformationsflowsintegrableandchaoticdynamics