Neural network learning theoretical foundations

This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Anthony, Martin 1967- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1999
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-29
DE-739
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043943141
003 DE-604
005 20230713
007 cr|uuu---uuuuu
008 161206s1999 xx o|||| 00||| eng d
020 |a 9780511624216  |c Online  |9 978-0-511-62421-6 
024 7 |a 10.1017/CBO9780511624216  |2 doi 
035 |a (ZDB-20-CBO)CR9780511624216 
035 |a (OCoLC)967602699 
035 |a (DE-599)BVBBV043943141 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-29  |a DE-739 
082 0 |a 006.3/2  |2 21 
084 |a ST 285  |0 (DE-625)143648:  |2 rvk 
084 |a ST 301  |0 (DE-625)143651:  |2 rvk 
100 1 |a Anthony, Martin  |d 1967-  |e Verfasser  |0 (DE-588)114372675  |4 aut 
245 1 0 |a Neural network learning  |b theoretical foundations  |c Martin Anthony and Peter L. Bartlett 
264 1 |a Cambridge  |b Cambridge University Press  |c 1999 
300 |a 1 online resource (xiv, 389 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
520 |a This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik–Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik–Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics 
650 4 |a Neural networks (Computer science) 
650 0 7 |a Neuronales Netz  |0 (DE-588)4226127-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Neuronales Netz  |0 (DE-588)4226127-2  |D s 
689 0 1 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 |5 DE-604 
700 1 |a Bartlett, Peter L.  |d 1966-  |e Sonstige  |0 (DE-588)140240780  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Hardcover  |z 978-0-521-57353-5 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 978-0-521-11862-0 
856 4 0 |u https://doi.org/10.1017/CBO9780511624216  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029352112 
966 e |u https://doi.org/10.1017/CBO9780511624216  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511624216  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511624216  |l DE-29  |p ZDB-20-CBO  |q UER_PDA_CBO_Kauf  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511624216  |l DE-739  |p ZDB-20-CBO  |q UPA_PDA_CBO_Kauf2019  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298723716399104
any_adam_object
author Anthony, Martin 1967-
author_GND (DE-588)114372675
(DE-588)140240780
author_facet Anthony, Martin 1967-
author_role aut
author_sort Anthony, Martin 1967-
author_variant m a ma
building Verbundindex
bvnumber BV043943141
classification_rvk ST 285
ST 301
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9780511624216
(OCoLC)967602699
(DE-599)BVBBV043943141
dewey-full 006.3/2
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/2
dewey-search 006.3/2
dewey-sort 16.3 12
dewey-tens 000 - Computer science, information, general works
discipline Informatik
doi_str_mv 10.1017/CBO9780511624216
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03344nam a2200517zc 4500</leader><controlfield tag="001">BV043943141</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230713 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511624216</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62421-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511624216</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511624216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602699</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anthony, Martin</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114372675</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural network learning</subfield><subfield code="b">theoretical foundations</subfield><subfield code="c">Martin Anthony and Peter L. Bartlett</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 389 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik–Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik–Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartlett, Peter L.</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)140240780</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-521-57353-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-0-521-11862-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352112</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624216</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UPA_PDA_CBO_Kauf2019</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043943141
illustrated Not Illustrated
indexdate 2024-12-24T05:34:03Z
institution BVB
isbn 9780511624216
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029352112
oclc_num 967602699
open_access_boolean
owner DE-12
DE-92
DE-29
DE-739
owner_facet DE-12
DE-92
DE-29
DE-739
physical 1 online resource (xiv, 389 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UER_PDA_CBO_Kauf
ZDB-20-CBO UPA_PDA_CBO_Kauf2019
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Cambridge University Press
record_format marc
spelling Anthony, Martin 1967- Verfasser (DE-588)114372675 aut
Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett
Cambridge Cambridge University Press 1999
1 online resource (xiv, 389 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
This book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik–Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a 'large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik–Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics
Neural networks (Computer science)
Neuronales Netz (DE-588)4226127-2 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Neuronales Netz (DE-588)4226127-2 s
Maschinelles Lernen (DE-588)4193754-5 s
DE-604
Bartlett, Peter L. 1966- Sonstige (DE-588)140240780 oth
Erscheint auch als Druck-Ausgabe, Hardcover 978-0-521-57353-5
Erscheint auch als Druck-Ausgabe, Paperback 978-0-521-11862-0
https://doi.org/10.1017/CBO9780511624216 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Anthony, Martin 1967-
Neural network learning theoretical foundations
Neural networks (Computer science)
Neuronales Netz (DE-588)4226127-2 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
subject_GND (DE-588)4226127-2
(DE-588)4193754-5
title Neural network learning theoretical foundations
title_auth Neural network learning theoretical foundations
title_exact_search Neural network learning theoretical foundations
title_full Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett
title_fullStr Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett
title_full_unstemmed Neural network learning theoretical foundations Martin Anthony and Peter L. Bartlett
title_short Neural network learning
title_sort neural network learning theoretical foundations
title_sub theoretical foundations
topic Neural networks (Computer science)
Neuronales Netz (DE-588)4226127-2 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
topic_facet Neural networks (Computer science)
Neuronales Netz
Maschinelles Lernen
url https://doi.org/10.1017/CBO9780511624216
work_keys_str_mv AT anthonymartin neuralnetworklearningtheoreticalfoundations
AT bartlettpeterl neuralnetworklearningtheoreticalfoundations