Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas
Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properti...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943039 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781139170598 |c Online |9 978-1-139-17059-8 | ||
024 | 7 | |a 10.1017/CBO9781139170598 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139170598 | ||
035 | |a (OCoLC)992932731 | ||
035 | |a (DE-599)BVBBV043943039 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.4/4 |2 20 | |
084 | |a UR 8000 |0 (DE-625)146642: |2 rvk | ||
100 | 1 | |a Sturrock, Peter A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Plasma physics |b an introduction to the theory of astrophysical, geophysical, and laboratory plasmas |c Peter A. Sturrock |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (xii, 335 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory -- uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field | |
505 | 8 | |a 17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability | |
505 | 8 | |a 13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion | |
505 | 8 | |a 9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves -- Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields | |
505 | 8 | |a 5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma | |
520 | |a Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of the plasma state. A basic knowledge of mathematics and physics is preferable to appreciate fully this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points | ||
650 | 4 | |a Plasma (Ionized gases) | |
650 | 4 | |a Magnetohydrodynamics | |
650 | 0 | 7 | |a Plasmaphysik |0 (DE-588)4046259-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmaphysik |0 (DE-588)4046259-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44350-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-44810-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139170598 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352010 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139170598 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139170598 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886572515328 |
---|---|
any_adam_object | |
author | Sturrock, Peter A. |
author_facet | Sturrock, Peter A. |
author_role | aut |
author_sort | Sturrock, Peter A. |
author_variant | p a s pa pas |
building | Verbundindex |
bvnumber | BV043943039 |
classification_rvk | UR 8000 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory -- uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field 17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability 13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion 9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves -- Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields 5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma |
ctrlnum | (ZDB-20-CBO)CR9781139170598 (OCoLC)992932731 (DE-599)BVBBV043943039 |
dewey-full | 530.4/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/4 |
dewey-search | 530.4/4 |
dewey-sort | 3530.4 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9781139170598 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07189nmm a2200529zc 4500</leader><controlfield tag="001">BV043943039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139170598</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17059-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139170598</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139170598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992932731</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/4</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8000</subfield><subfield code="0">(DE-625)146642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sturrock, Peter A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma physics</subfield><subfield code="b">an introduction to the theory of astrophysical, geophysical, and laboratory plasmas</subfield><subfield code="c">Peter A. Sturrock</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 335 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory -- uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves -- Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of the plasma state. A basic knowledge of mathematics and physics is preferable to appreciate fully this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmaphysik</subfield><subfield code="0">(DE-588)4046259-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmaphysik</subfield><subfield code="0">(DE-588)4046259-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44350-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-44810-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139170598</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352010</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139170598</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139170598</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943039 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9781139170598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352010 |
oclc_num | 992932731 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 335 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Sturrock, Peter A. Verfasser aut Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas Peter A. Sturrock Cambridge Cambridge University Press 1994 1 online resource (xii, 335 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory -- uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field 17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability 13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion 9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves -- Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields 5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of the plasma state. A basic knowledge of mathematics and physics is preferable to appreciate fully this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points Plasma (Ionized gases) Magnetohydrodynamics Plasmaphysik (DE-588)4046259-6 gnd rswk-swf Plasmaphysik (DE-588)4046259-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-44350-0 Erscheint auch als Druckausgabe 978-0-521-44810-9 https://doi.org/10.1017/CBO9781139170598 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sturrock, Peter A. Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas 1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory -- uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field 17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability 13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion 9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves -- Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields 5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma Plasma (Ionized gases) Magnetohydrodynamics Plasmaphysik (DE-588)4046259-6 gnd |
subject_GND | (DE-588)4046259-6 |
title | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas |
title_auth | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas |
title_exact_search | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas |
title_full | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas Peter A. Sturrock |
title_fullStr | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas Peter A. Sturrock |
title_full_unstemmed | Plasma physics an introduction to the theory of astrophysical, geophysical, and laboratory plasmas Peter A. Sturrock |
title_short | Plasma physics |
title_sort | plasma physics an introduction to the theory of astrophysical geophysical and laboratory plasmas |
title_sub | an introduction to the theory of astrophysical, geophysical, and laboratory plasmas |
topic | Plasma (Ionized gases) Magnetohydrodynamics Plasmaphysik (DE-588)4046259-6 gnd |
topic_facet | Plasma (Ionized gases) Magnetohydrodynamics Plasmaphysik |
url | https://doi.org/10.1017/CBO9781139170598 |
work_keys_str_mv | AT sturrockpetera plasmaphysicsanintroductiontothetheoryofastrophysicalgeophysicalandlaboratoryplasmas |