Reversibility in dynamics and group theory
Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing rev...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schriftenreihe: | London Mathematical Society lecture note series
416 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942365 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 xx o|||| 00||| eng d | ||
020 | |a 9781139998321 |c Online |9 978-1-139-99832-1 | ||
024 | 7 | |a 10.1017/CBO9781139998321 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139998321 | ||
035 | |a (OCoLC)930540683 | ||
035 | |a (DE-599)BVBBV043942365 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.39 |2 23 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a O'Farrell, A. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Reversibility in dynamics and group theory |c Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University) |
246 | 1 | 3 | |a Reversibility in Dynamics & Group Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (xii, 281 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 416 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Origins -- Basic ideas -- Finite groups -- The classical groups -- Compact groups -- Isometry groups -- Groups of integer matrices -- Real homeomorphisms -- Circle homeomorphisms -- Formal power series -- Real diffeomorphisms -- Biholomorphic germs | |
520 | |a Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing reversibility means that researchers who encounter the concept may be unaware of related work in other fields. This text is the first to make reversibility the focus of attention. The authors fix standard notation and terminology, establish the basic common principles, and illustrate the impact of reversibility in such diverse areas as group theory, differential and analytic geometry, number theory, complex analysis and approximation theory. As well as showing connections between different fields, the authors' viewpoint reveals many open questions, making this book ideal for graduate students and researchers. The exposition is accessible to readers at the advanced undergraduate level and above | ||
650 | 4 | |a Conjugacy classes | |
650 | 4 | |a Group theory | |
650 | 4 | |a Automorphisms | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Reverse mathematics | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Umkehrbarkeit |0 (DE-588)4427661-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | 2 | |a Umkehrbarkeit |0 (DE-588)4427661-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Short, Ian |d 1979- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-44288-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139998321 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029351335 | |
966 | e | |u https://doi.org/10.1017/CBO9781139998321 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139998321 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819298718359224320 |
---|---|
any_adam_object | |
author | O'Farrell, A. G. |
author_facet | O'Farrell, A. G. |
author_role | aut |
author_sort | O'Farrell, A. G. |
author_variant | a g o ag ago |
building | Verbundindex |
bvnumber | BV043942365 |
classification_rvk | SI 320 SK 260 SK 810 |
collection | ZDB-20-CBO |
contents | Origins -- Basic ideas -- Finite groups -- The classical groups -- Compact groups -- Isometry groups -- Groups of integer matrices -- Real homeomorphisms -- Circle homeomorphisms -- Formal power series -- Real diffeomorphisms -- Biholomorphic germs |
ctrlnum | (ZDB-20-CBO)CR9781139998321 (OCoLC)930540683 (DE-599)BVBBV043942365 |
dewey-full | 515/.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.39 |
dewey-search | 515/.39 |
dewey-sort | 3515 239 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139998321 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03682nam a2200613zcb4500</leader><controlfield tag="001">BV043942365</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139998321</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-99832-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139998321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139998321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930540683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942365</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Farrell, A. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reversibility in dynamics and group theory</subfield><subfield code="c">Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Reversibility in Dynamics & Group Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 281 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">416</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Origins -- Basic ideas -- Finite groups -- The classical groups -- Compact groups -- Isometry groups -- Groups of integer matrices -- Real homeomorphisms -- Circle homeomorphisms -- Formal power series -- Real diffeomorphisms -- Biholomorphic germs</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing reversibility means that researchers who encounter the concept may be unaware of related work in other fields. This text is the first to make reversibility the focus of attention. The authors fix standard notation and terminology, establish the basic common principles, and illustrate the impact of reversibility in such diverse areas as group theory, differential and analytic geometry, number theory, complex analysis and approximation theory. As well as showing connections between different fields, the authors' viewpoint reveals many open questions, making this book ideal for graduate students and researchers. The exposition is accessible to readers at the advanced undergraduate level and above</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conjugacy classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automorphisms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umkehrbarkeit</subfield><subfield code="0">(DE-588)4427661-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Umkehrbarkeit</subfield><subfield code="0">(DE-588)4427661-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Short, Ian</subfield><subfield code="d">1979-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-44288-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139998321</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351335</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139998321</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139998321</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942365 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T05:34:01Z |
institution | BVB |
isbn | 9781139998321 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351335 |
oclc_num | 930540683 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 281 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | O'Farrell, A. G. Verfasser aut Reversibility in dynamics and group theory Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University) Reversibility in Dynamics & Group Theory Cambridge Cambridge University Press 2014 1 online resource (xii, 281 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 416 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Origins -- Basic ideas -- Finite groups -- The classical groups -- Compact groups -- Isometry groups -- Groups of integer matrices -- Real homeomorphisms -- Circle homeomorphisms -- Formal power series -- Real diffeomorphisms -- Biholomorphic germs Reversibility is a thread woven through many branches of mathematics. It arises in dynamics, in systems that admit a time-reversal symmetry, and in group theory where the reversible group elements are those that are conjugate to their inverses. However, the lack of a lingua franca for discussing reversibility means that researchers who encounter the concept may be unaware of related work in other fields. This text is the first to make reversibility the focus of attention. The authors fix standard notation and terminology, establish the basic common principles, and illustrate the impact of reversibility in such diverse areas as group theory, differential and analytic geometry, number theory, complex analysis and approximation theory. As well as showing connections between different fields, the authors' viewpoint reveals many open questions, making this book ideal for graduate students and researchers. The exposition is accessible to readers at the advanced undergraduate level and above Conjugacy classes Group theory Automorphisms Dynamics Reverse mathematics Dynamisches System (DE-588)4013396-5 gnd rswk-swf Umkehrbarkeit (DE-588)4427661-8 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Dynamisches System (DE-588)4013396-5 s Umkehrbarkeit (DE-588)4427661-8 s 1\p DE-604 Short, Ian 1979- Sonstige oth Erscheint auch als Druckausgabe 978-1-107-44288-7 https://doi.org/10.1017/CBO9781139998321 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | O'Farrell, A. G. Reversibility in dynamics and group theory Origins -- Basic ideas -- Finite groups -- The classical groups -- Compact groups -- Isometry groups -- Groups of integer matrices -- Real homeomorphisms -- Circle homeomorphisms -- Formal power series -- Real diffeomorphisms -- Biholomorphic germs Conjugacy classes Group theory Automorphisms Dynamics Reverse mathematics Dynamisches System (DE-588)4013396-5 gnd Umkehrbarkeit (DE-588)4427661-8 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4427661-8 (DE-588)4072157-7 |
title | Reversibility in dynamics and group theory |
title_alt | Reversibility in Dynamics & Group Theory |
title_auth | Reversibility in dynamics and group theory |
title_exact_search | Reversibility in dynamics and group theory |
title_full | Reversibility in dynamics and group theory Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University) |
title_fullStr | Reversibility in dynamics and group theory Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University) |
title_full_unstemmed | Reversibility in dynamics and group theory Anthony G. O'Farrell (National University of Ireland, Maynooth), Ian Short (Open University) |
title_short | Reversibility in dynamics and group theory |
title_sort | reversibility in dynamics and group theory |
topic | Conjugacy classes Group theory Automorphisms Dynamics Reverse mathematics Dynamisches System (DE-588)4013396-5 gnd Umkehrbarkeit (DE-588)4427661-8 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Conjugacy classes Group theory Automorphisms Dynamics Reverse mathematics Dynamisches System Umkehrbarkeit Gruppentheorie |
url | https://doi.org/10.1017/CBO9781139998321 |
work_keys_str_mv | AT ofarrellag reversibilityindynamicsandgrouptheory AT shortian reversibilityindynamicsandgrouptheory AT ofarrellag reversibilityindynamicsgrouptheory AT shortian reversibilityindynamicsgrouptheory |