P-adic analysis a short course on recent work

This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Koblitz, Neal 1948- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1980
Schriftenreihe:London Mathematical Society lecture note series 46
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043942321
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s1980 |||| o||u| ||||||eng d
020 |a 9780511526107  |c Online  |9 978-0-511-52610-7 
024 7 |a 10.1017/CBO9780511526107  |2 doi 
035 |a (ZDB-20-CBO)CR9780511526107 
035 |a (OCoLC)967602281 
035 |a (DE-599)BVBBV043942321 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 512/.74  |2 19eng 
084 |a SI 320  |0 (DE-625)143123:  |2 rvk 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
100 1 |a Koblitz, Neal  |d 1948-  |e Verfasser  |4 aut 
245 1 0 |a P-adic analysis  |b a short course on recent work  |c Neal Koblitz 
264 1 |a Cambridge  |b Cambridge University Press  |c 1980 
300 |a 1 online resource (163 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society lecture note series  |v 46 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
520 |a This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research 
650 4 |a p-adic analysis 
650 0 7 |a p-adische Zahl  |0 (DE-588)4044292-5  |2 gnd  |9 rswk-swf 
689 0 0 |a p-adische Zahl  |0 (DE-588)4044292-5  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-28060-0 
856 4 0 |u https://doi.org/10.1017/CBO9780511526107  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029351291 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1017/CBO9780511526107  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511526107  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176884981825536
any_adam_object
author Koblitz, Neal 1948-
author_facet Koblitz, Neal 1948-
author_role aut
author_sort Koblitz, Neal 1948-
author_variant n k nk
building Verbundindex
bvnumber BV043942321
classification_rvk SI 320
SK 180
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9780511526107
(OCoLC)967602281
(DE-599)BVBBV043942321
dewey-full 512/.74
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.74
dewey-search 512/.74
dewey-sort 3512 274
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511526107
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02719nmm a2200469zcb4500</leader><controlfield tag="001">BV043942321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526107</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52610-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526107</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koblitz, Neal</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P-adic analysis</subfield><subfield code="b">a short course on recent work</subfield><subfield code="c">Neal Koblitz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (163 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">46</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28060-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526107</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351291</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526107</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526107</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043942321
illustrated Not Illustrated
indexdate 2024-07-10T07:39:17Z
institution BVB
isbn 9780511526107
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029351291
oclc_num 967602281
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (163 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 1980
publishDateSearch 1980
publishDateSort 1980
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Koblitz, Neal 1948- Verfasser aut
P-adic analysis a short course on recent work Neal Koblitz
Cambridge Cambridge University Press 1980
1 online resource (163 pages)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society lecture note series 46
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
This introduction to recent work in p-adic analysis and number theory will make accessible to a relatively general audience the efforts of a number of mathematicians over the last five years. After reviewing the basics (the construction of p-adic numbers and the p-adic analog of the complex number field, power series and Newton polygons), the author develops the properties of p-adic Dirichlet L-series using p-adic measures and integration. p-adic gamma functions are introduced, and their relationship to L-series is explored. Analogies with the corresponding complex analytic case are stressed. Then a formula for Gauss sums in terms of the p-adic gamma function is proved using the cohomology of Fermat and Artin-Schreier curves. Graduate students and research workers in number theory, algebraic geometry and parts of algebra and analysis will welcome this account of current research
p-adic analysis
p-adische Zahl (DE-588)4044292-5 gnd rswk-swf
p-adische Zahl (DE-588)4044292-5 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-28060-0
https://doi.org/10.1017/CBO9780511526107 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Koblitz, Neal 1948-
P-adic analysis a short course on recent work
p-adic analysis
p-adische Zahl (DE-588)4044292-5 gnd
subject_GND (DE-588)4044292-5
title P-adic analysis a short course on recent work
title_auth P-adic analysis a short course on recent work
title_exact_search P-adic analysis a short course on recent work
title_full P-adic analysis a short course on recent work Neal Koblitz
title_fullStr P-adic analysis a short course on recent work Neal Koblitz
title_full_unstemmed P-adic analysis a short course on recent work Neal Koblitz
title_short P-adic analysis
title_sort p adic analysis a short course on recent work
title_sub a short course on recent work
topic p-adic analysis
p-adische Zahl (DE-588)4044292-5 gnd
topic_facet p-adic analysis
p-adische Zahl
url https://doi.org/10.1017/CBO9780511526107
work_keys_str_mv AT koblitzneal padicanalysisashortcourseonrecentwork