Arithmetic differential operators over the p-adic integers

The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ralph, Claire C. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2012
Schriftenreihe:London Mathematical Society lecture note series 396
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043942276
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2012 xx o|||| 00||| eng d
020 |a 9781139084666  |c Online  |9 978-1-139-08466-6 
024 7 |a 10.1017/CBO9781139084666  |2 doi 
035 |a (ZDB-20-CBO)CR9781139084666 
035 |a (OCoLC)859644185 
035 |a (DE-599)BVBBV043942276 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 515.7242  |2 23 
084 |a SI 320  |0 (DE-625)143123:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
100 1 |a Ralph, Claire C.  |e Verfasser  |4 aut 
245 1 0 |a Arithmetic differential operators over the p-adic integers  |c Claire C. Ralph, Santiago R. Simanca 
264 1 |a Cambridge  |b Cambridge University Press  |c 2012 
300 |a 1 online resource (vi, 139 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society lecture note series  |v 396 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a The p-adic numbers Qp -- Some classical analysis on Qp -- The Artin-Hasse exponential function -- The completion of the algebraic closure of Qp -- Zeta functions -- Analytic functions on Zp -- Arithmetic differential operators on Zp -- A general view of arithmetic differential operators -- Analyticity of arithmetic differential operators -- Characteristic functions of discs in Zp: p-adic coordinates -- Characteristic functions of discs in Zp: harmonic coordinates -- Some differences between (Se(B-operators over Zp and Zur p 
520 |a The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers 
650 4 |a Differential operators 
650 4 |a Arithmetic functions 
650 4 |a p-adic numbers 
650 0 7 |a Differentialoperator  |0 (DE-588)4012251-7  |2 gnd  |9 rswk-swf 
650 0 7 |a p-adische Zahl  |0 (DE-588)4044292-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Differentialoperator  |0 (DE-588)4012251-7  |D s 
689 0 1 |a p-adische Zahl  |0 (DE-588)4044292-5  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Simanca, S. R.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-1-107-67414-1 
856 4 0 |u https://doi.org/10.1017/CBO9781139084666  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029351245 
966 e |u https://doi.org/10.1017/CBO9781139084666  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9781139084666  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298718347689989
any_adam_object
author Ralph, Claire C.
author_facet Ralph, Claire C.
author_role aut
author_sort Ralph, Claire C.
author_variant c c r cc ccr
building Verbundindex
bvnumber BV043942276
classification_rvk SI 320
SK 540
SK 620
collection ZDB-20-CBO
contents The p-adic numbers Qp -- Some classical analysis on Qp -- The Artin-Hasse exponential function -- The completion of the algebraic closure of Qp -- Zeta functions -- Analytic functions on Zp -- Arithmetic differential operators on Zp -- A general view of arithmetic differential operators -- Analyticity of arithmetic differential operators -- Characteristic functions of discs in Zp: p-adic coordinates -- Characteristic functions of discs in Zp: harmonic coordinates -- Some differences between (Se(B-operators over Zp and Zur p
ctrlnum (ZDB-20-CBO)CR9781139084666
(OCoLC)859644185
(DE-599)BVBBV043942276
dewey-full 515.7242
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7242
dewey-search 515.7242
dewey-sort 3515.7242
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9781139084666
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nam a2200553zcb4500</leader><controlfield tag="001">BV043942276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2012 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139084666</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-08466-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139084666</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139084666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7242</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ralph, Claire C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic differential operators over the p-adic integers</subfield><subfield code="c">Claire C. Ralph, Santiago R. Simanca</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 139 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The p-adic numbers Qp -- Some classical analysis on Qp -- The Artin-Hasse exponential function -- The completion of the algebraic closure of Qp -- Zeta functions -- Analytic functions on Zp -- Arithmetic differential operators on Zp -- A general view of arithmetic differential operators -- Analyticity of arithmetic differential operators -- Characteristic functions of discs in Zp: p-adic coordinates -- Characteristic functions of discs in Zp: harmonic coordinates -- Some differences between (Se(B-operators over Zp and Zur p</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic numbers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simanca, S. R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-67414-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139084666</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351245</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139084666</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139084666</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043942276
illustrated Not Illustrated
indexdate 2024-12-24T05:34:01Z
institution BVB
isbn 9781139084666
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029351245
oclc_num 859644185
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (vi, 139 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Ralph, Claire C. Verfasser aut
Arithmetic differential operators over the p-adic integers Claire C. Ralph, Santiago R. Simanca
Cambridge Cambridge University Press 2012
1 online resource (vi, 139 pages)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society lecture note series 396
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
The p-adic numbers Qp -- Some classical analysis on Qp -- The Artin-Hasse exponential function -- The completion of the algebraic closure of Qp -- Zeta functions -- Analytic functions on Zp -- Arithmetic differential operators on Zp -- A general view of arithmetic differential operators -- Analyticity of arithmetic differential operators -- Characteristic functions of discs in Zp: p-adic coordinates -- Characteristic functions of discs in Zp: harmonic coordinates -- Some differences between (Se(B-operators over Zp and Zur p
The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers
Differential operators
Arithmetic functions
p-adic numbers
Differentialoperator (DE-588)4012251-7 gnd rswk-swf
p-adische Zahl (DE-588)4044292-5 gnd rswk-swf
Differentialoperator (DE-588)4012251-7 s
p-adische Zahl (DE-588)4044292-5 s
1\p DE-604
Simanca, S. R. Sonstige oth
Erscheint auch als Druckausgabe 978-1-107-67414-1
https://doi.org/10.1017/CBO9781139084666 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Ralph, Claire C.
Arithmetic differential operators over the p-adic integers
The p-adic numbers Qp -- Some classical analysis on Qp -- The Artin-Hasse exponential function -- The completion of the algebraic closure of Qp -- Zeta functions -- Analytic functions on Zp -- Arithmetic differential operators on Zp -- A general view of arithmetic differential operators -- Analyticity of arithmetic differential operators -- Characteristic functions of discs in Zp: p-adic coordinates -- Characteristic functions of discs in Zp: harmonic coordinates -- Some differences between (Se(B-operators over Zp and Zur p
Differential operators
Arithmetic functions
p-adic numbers
Differentialoperator (DE-588)4012251-7 gnd
p-adische Zahl (DE-588)4044292-5 gnd
subject_GND (DE-588)4012251-7
(DE-588)4044292-5
title Arithmetic differential operators over the p-adic integers
title_auth Arithmetic differential operators over the p-adic integers
title_exact_search Arithmetic differential operators over the p-adic integers
title_full Arithmetic differential operators over the p-adic integers Claire C. Ralph, Santiago R. Simanca
title_fullStr Arithmetic differential operators over the p-adic integers Claire C. Ralph, Santiago R. Simanca
title_full_unstemmed Arithmetic differential operators over the p-adic integers Claire C. Ralph, Santiago R. Simanca
title_short Arithmetic differential operators over the p-adic integers
title_sort arithmetic differential operators over the p adic integers
topic Differential operators
Arithmetic functions
p-adic numbers
Differentialoperator (DE-588)4012251-7 gnd
p-adische Zahl (DE-588)4044292-5 gnd
topic_facet Differential operators
Arithmetic functions
p-adic numbers
Differentialoperator
p-adische Zahl
url https://doi.org/10.1017/CBO9781139084666
work_keys_str_mv AT ralphclairec arithmeticdifferentialoperatorsoverthepadicintegers
AT simancasr arithmeticdifferentialoperatorsoverthepadicintegers