Regular variation

This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bingham, N. H. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1987
Schriftenreihe:Encyclopedia of mathematics and its applications volume 27
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043942078
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s1987 xx o|||| 00||| eng d
020 |a 9780511721434  |c Online  |9 978-0-511-72143-4 
024 7 |a 10.1017/CBO9780511721434  |2 doi 
035 |a (ZDB-20-CBO)CR9780511721434 
035 |a (OCoLC)967776251 
035 |a (DE-599)BVBBV043942078 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 515.8  |2 19eng 
084 |a SK 420  |0 (DE-625)143238:  |2 rvk 
084 |a SK 660  |0 (DE-625)143251:  |2 rvk 
100 1 |a Bingham, N. H.  |e Verfasser  |4 aut 
245 1 0 |a Regular variation  |c N.H. Bingham, C.M. Goldie, J.L. Teugels 
264 1 |a Cambridge  |b Cambridge University Press  |c 1987 
300 |a 1 online resource (xix, 491 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopedia of mathematics and its applications  |v volume 27 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices 
520 |a This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields 
650 4 |a Functions of real variables 
650 4 |a Calculus 
650 0 7 |a Reguläres Variationsproblem  |0 (DE-588)4401284-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Reguläres Variationsproblem  |0 (DE-588)4401284-6  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Goldie, Charles M.  |e Sonstige  |4 oth 
700 1 |a Teugels, Jef L.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-30787-1 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-37943-4 
856 4 0 |u https://doi.org/10.1017/CBO9780511721434  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029351048 
966 e |u https://doi.org/10.1017/CBO9780511721434  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511721434  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298718299455490
any_adam_object
author Bingham, N. H.
author_facet Bingham, N. H.
author_role aut
author_sort Bingham, N. H.
author_variant n h b nh nhb
building Verbundindex
bvnumber BV043942078
classification_rvk SK 420
SK 660
collection ZDB-20-CBO
contents Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices
ctrlnum (ZDB-20-CBO)CR9780511721434
(OCoLC)967776251
(DE-599)BVBBV043942078
dewey-full 515.8
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.8
dewey-search 515.8
dewey-sort 3515.8
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511721434
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03660nam a2200529zcb4500</leader><controlfield tag="001">BV043942078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721434</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72143-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721434</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776251</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bingham, N. H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regular variation</subfield><subfield code="c">N.H. Bingham, C.M. Goldie, J.L. Teugels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 491 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reguläres Variationsproblem</subfield><subfield code="0">(DE-588)4401284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reguläres Variationsproblem</subfield><subfield code="0">(DE-588)4401284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldie, Charles M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teugels, Jef L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-30787-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-37943-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351048</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721434</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043942078
illustrated Not Illustrated
indexdate 2024-12-24T05:34:01Z
institution BVB
isbn 9780511721434
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029351048
oclc_num 967776251
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xix, 491 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 1987
publishDateSearch 1987
publishDateSort 1987
publisher Cambridge University Press
record_format marc
series2 Encyclopedia of mathematics and its applications
spelling Bingham, N. H. Verfasser aut
Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels
Cambridge Cambridge University Press 1987
1 online resource (xix, 491 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Encyclopedia of mathematics and its applications volume 27
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices
This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields
Functions of real variables
Calculus
Reguläres Variationsproblem (DE-588)4401284-6 gnd rswk-swf
Reguläres Variationsproblem (DE-588)4401284-6 s
1\p DE-604
Goldie, Charles M. Sonstige oth
Teugels, Jef L. Sonstige oth
Erscheint auch als Druckausgabe 978-0-521-30787-1
Erscheint auch als Druckausgabe 978-0-521-37943-4
https://doi.org/10.1017/CBO9780511721434 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Bingham, N. H.
Regular variation
Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices
Functions of real variables
Calculus
Reguläres Variationsproblem (DE-588)4401284-6 gnd
subject_GND (DE-588)4401284-6
title Regular variation
title_auth Regular variation
title_exact_search Regular variation
title_full Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels
title_fullStr Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels
title_full_unstemmed Regular variation N.H. Bingham, C.M. Goldie, J.L. Teugels
title_short Regular variation
title_sort regular variation
topic Functions of real variables
Calculus
Reguläres Variationsproblem (DE-588)4401284-6 gnd
topic_facet Functions of real variables
Calculus
Reguläres Variationsproblem
url https://doi.org/10.1017/CBO9780511721434
work_keys_str_mv AT binghamnh regularvariation
AT goldiecharlesm regularvariation
AT teugelsjefl regularvariation