Higher operads, higher categories

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leinster, Tom 1971- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2004
Schriftenreihe:London Mathematical Society lecture note series 298
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043941958
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2004 |||| o||u| ||||||eng d
020 |a 9780511525896  |c Online  |9 978-0-511-52589-6 
024 7 |a 10.1017/CBO9780511525896  |2 doi 
035 |a (ZDB-20-CBO)CR9780511525896 
035 |a (OCoLC)850372101 
035 |a (DE-599)BVBBV043941958 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 512.62  |2 22 
084 |a SI 320  |0 (DE-625)143123:  |2 rvk 
084 |a SK 320  |0 (DE-625)143231:  |2 rvk 
100 1 |a Leinster, Tom  |d 1971-  |e Verfasser  |4 aut 
245 1 0 |a Higher operads, higher categories  |c Tom Leinster 
264 1 |a Cambridge  |b Cambridge University Press  |c 2004 
300 |a 1 online resource (xiii, 433 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society lecture note series  |v 298 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction 
520 |a Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics 
650 4 |a Operads 
650 4 |a Categories (Mathematics) 
650 0 7 |a Kategorientheorie  |0 (DE-588)4120552-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Operade  |0 (DE-588)4638722-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Dimension n  |0 (DE-588)4309313-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Kategorientheorie  |0 (DE-588)4120552-2  |D s 
689 0 1 |a Dimension n  |0 (DE-588)4309313-9  |D s 
689 0 2 |a Operade  |0 (DE-588)4638722-5  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-53215-0 
856 4 0 |u https://doi.org/10.1017/CBO9780511525896  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029350928 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1017/CBO9780511525896  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511525896  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176884284522496
any_adam_object
author Leinster, Tom 1971-
author_facet Leinster, Tom 1971-
author_role aut
author_sort Leinster, Tom 1971-
author_variant t l tl
building Verbundindex
bvnumber BV043941958
classification_rvk SI 320
SK 320
collection ZDB-20-CBO
contents Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction
ctrlnum (ZDB-20-CBO)CR9780511525896
(OCoLC)850372101
(DE-599)BVBBV043941958
dewey-full 512.62
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.62
dewey-search 512.62
dewey-sort 3512.62
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511525896
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03677nmm a2200541zcb4500</leader><controlfield tag="001">BV043941958</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511525896</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52589-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511525896</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511525896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850372101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941958</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.62</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leinster, Tom</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher operads, higher categories</subfield><subfield code="c">Tom Leinster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 433 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">298</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operads</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categories (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operade</subfield><subfield code="0">(DE-588)4638722-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kategorientheorie</subfield><subfield code="0">(DE-588)4120552-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Operade</subfield><subfield code="0">(DE-588)4638722-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53215-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350928</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525896</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043941958
illustrated Not Illustrated
indexdate 2024-07-10T07:39:16Z
institution BVB
isbn 9780511525896
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350928
oclc_num 850372101
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xiii, 433 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Leinster, Tom 1971- Verfasser aut
Higher operads, higher categories Tom Leinster
Cambridge Cambridge University Press 2004
1 online resource (xiii, 433 pages)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society lecture note series 298
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction
Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics
Operads
Categories (Mathematics)
Kategorientheorie (DE-588)4120552-2 gnd rswk-swf
Operade (DE-588)4638722-5 gnd rswk-swf
Dimension n (DE-588)4309313-9 gnd rswk-swf
Kategorientheorie (DE-588)4120552-2 s
Dimension n (DE-588)4309313-9 s
Operade (DE-588)4638722-5 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-53215-0
https://doi.org/10.1017/CBO9780511525896 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Leinster, Tom 1971-
Higher operads, higher categories
Background: Classical categorical structures -- Classical operads and multicategories -- Notions of monoidal category -- Operads. Generalized operads and multicategories: basics -- Example: fc-multicategories -- Generalized operads and multicategories: further theory -- Opetopes -- n-categories: Globular operads -- A definition of weak n-category -- Other definitions of weak n-category -- Appendices: A. Symmetric structures -- B. Coherence for monoidal categories -- C. Special Cartesian monads -- D. Free multicategories -- E. Definitions of trees -- F. Free strict n-categories -- G. Initial operad-with-contraction
Operads
Categories (Mathematics)
Kategorientheorie (DE-588)4120552-2 gnd
Operade (DE-588)4638722-5 gnd
Dimension n (DE-588)4309313-9 gnd
subject_GND (DE-588)4120552-2
(DE-588)4638722-5
(DE-588)4309313-9
title Higher operads, higher categories
title_auth Higher operads, higher categories
title_exact_search Higher operads, higher categories
title_full Higher operads, higher categories Tom Leinster
title_fullStr Higher operads, higher categories Tom Leinster
title_full_unstemmed Higher operads, higher categories Tom Leinster
title_short Higher operads, higher categories
title_sort higher operads higher categories
topic Operads
Categories (Mathematics)
Kategorientheorie (DE-588)4120552-2 gnd
Operade (DE-588)4638722-5 gnd
Dimension n (DE-588)4309313-9 gnd
topic_facet Operads
Categories (Mathematics)
Kategorientheorie
Operade
Dimension n
url https://doi.org/10.1017/CBO9780511525896
work_keys_str_mv AT leinstertom higheroperadshighercategories