The coordinate-free approach to linear models
This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
19 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941807 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 xx o|||| 00||| eng d | ||
020 | |a 9780511546822 |c Online |9 978-0-511-54682-2 | ||
024 | 7 | |a 10.1017/CBO9780511546822 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546822 | ||
035 | |a (OCoLC)967697254 | ||
035 | |a (DE-599)BVBBV043941807 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.5 |2 22 | |
084 | |a QH 230 |0 (DE-625)141545: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
100 | 1 | |a Wichura, Michael J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The coordinate-free approach to linear models |c Michael J. Wichura |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (xiii, 199 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 19 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations | |
520 | |a This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations | ||
650 | 4 | |a Linear models (Statistics) | |
650 | 4 | |a Analysis of variance | |
650 | 4 | |a Regression analysis | |
650 | 4 | |a Analysis of covariance | |
650 | 0 | 7 | |a Lineares Modell |0 (DE-588)4134827-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kovarianzanalyse |0 (DE-588)4197017-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Varianzanalyse |0 (DE-588)4187413-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares Modell |0 (DE-588)4134827-8 |D s |
689 | 0 | 1 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 0 | 2 | |a Varianzanalyse |0 (DE-588)4187413-4 |D s |
689 | 0 | 3 | |a Kovarianzanalyse |0 (DE-588)4197017-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-86842-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546822 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350777 | |
966 | e | |u https://doi.org/10.1017/CBO9780511546822 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546822 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819298716103737344 |
---|---|
any_adam_object | |
author | Wichura, Michael J. |
author_facet | Wichura, Michael J. |
author_role | aut |
author_sort | Wichura, Michael J. |
author_variant | m j w mj mjw |
building | Verbundindex |
bvnumber | BV043941807 |
classification_rvk | QH 230 SK 840 |
collection | ZDB-20-CBO |
contents | Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations |
ctrlnum | (ZDB-20-CBO)CR9780511546822 (OCoLC)967697254 (DE-599)BVBBV043941807 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511546822 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03538nam a2200589zcb4500</leader><controlfield tag="001">BV043941807</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546822</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54682-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 230</subfield><subfield code="0">(DE-625)141545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wichura, Michael J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The coordinate-free approach to linear models</subfield><subfield code="c">Michael J. Wichura</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 199 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">19</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of covariance</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kovarianzanalyse</subfield><subfield code="0">(DE-588)4197017-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kovarianzanalyse</subfield><subfield code="0">(DE-588)4197017-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86842-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350777</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941807 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T05:34:00Z |
institution | BVB |
isbn | 9780511546822 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350777 |
oclc_num | 967697254 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 199 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Wichura, Michael J. Verfasser aut The coordinate-free approach to linear models Michael J. Wichura Cambridge Cambridge University Press 2006 1 online resource (xiii, 199 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 19 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations Linear models (Statistics) Analysis of variance Regression analysis Analysis of covariance Lineares Modell (DE-588)4134827-8 gnd rswk-swf Kovarianzanalyse (DE-588)4197017-2 gnd rswk-swf Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Varianzanalyse (DE-588)4187413-4 gnd rswk-swf Lineares Modell (DE-588)4134827-8 s Regressionsanalyse (DE-588)4129903-6 s Varianzanalyse (DE-588)4187413-4 s Kovarianzanalyse (DE-588)4197017-2 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-86842-6 https://doi.org/10.1017/CBO9780511546822 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wichura, Michael J. The coordinate-free approach to linear models Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations Linear models (Statistics) Analysis of variance Regression analysis Analysis of covariance Lineares Modell (DE-588)4134827-8 gnd Kovarianzanalyse (DE-588)4197017-2 gnd Regressionsanalyse (DE-588)4129903-6 gnd Varianzanalyse (DE-588)4187413-4 gnd |
subject_GND | (DE-588)4134827-8 (DE-588)4197017-2 (DE-588)4129903-6 (DE-588)4187413-4 |
title | The coordinate-free approach to linear models |
title_auth | The coordinate-free approach to linear models |
title_exact_search | The coordinate-free approach to linear models |
title_full | The coordinate-free approach to linear models Michael J. Wichura |
title_fullStr | The coordinate-free approach to linear models Michael J. Wichura |
title_full_unstemmed | The coordinate-free approach to linear models Michael J. Wichura |
title_short | The coordinate-free approach to linear models |
title_sort | the coordinate free approach to linear models |
topic | Linear models (Statistics) Analysis of variance Regression analysis Analysis of covariance Lineares Modell (DE-588)4134827-8 gnd Kovarianzanalyse (DE-588)4197017-2 gnd Regressionsanalyse (DE-588)4129903-6 gnd Varianzanalyse (DE-588)4187413-4 gnd |
topic_facet | Linear models (Statistics) Analysis of variance Regression analysis Analysis of covariance Lineares Modell Kovarianzanalyse Regressionsanalyse Varianzanalyse |
url | https://doi.org/10.1017/CBO9780511546822 |
work_keys_str_mv | AT wichuramichaelj thecoordinatefreeapproachtolinearmodels |