The coordinate-free approach to linear models

This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wichura, Michael J. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2006
Schriftenreihe:Cambridge series on statistical and probabilistic mathematics 19
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043941807
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2006 xx o|||| 00||| eng d
020 |a 9780511546822  |c Online  |9 978-0-511-54682-2 
024 7 |a 10.1017/CBO9780511546822  |2 doi 
035 |a (ZDB-20-CBO)CR9780511546822 
035 |a (OCoLC)967697254 
035 |a (DE-599)BVBBV043941807 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 519.5  |2 22 
084 |a QH 230  |0 (DE-625)141545:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
100 1 |a Wichura, Michael J.  |e Verfasser  |4 aut 
245 1 0 |a The coordinate-free approach to linear models  |c Michael J. Wichura 
264 1 |a Cambridge  |b Cambridge University Press  |c 2006 
300 |a 1 online resource (xiii, 199 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Cambridge series on statistical and probabilistic mathematics  |v 19 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations 
520 |a This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations 
650 4 |a Linear models (Statistics) 
650 4 |a Analysis of variance 
650 4 |a Regression analysis 
650 4 |a Analysis of covariance 
650 0 7 |a Lineares Modell  |0 (DE-588)4134827-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Kovarianzanalyse  |0 (DE-588)4197017-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Regressionsanalyse  |0 (DE-588)4129903-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Varianzanalyse  |0 (DE-588)4187413-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineares Modell  |0 (DE-588)4134827-8  |D s 
689 0 1 |a Regressionsanalyse  |0 (DE-588)4129903-6  |D s 
689 0 2 |a Varianzanalyse  |0 (DE-588)4187413-4  |D s 
689 0 3 |a Kovarianzanalyse  |0 (DE-588)4197017-2  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-86842-6 
856 4 0 |u https://doi.org/10.1017/CBO9780511546822  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029350777 
966 e |u https://doi.org/10.1017/CBO9780511546822  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511546822  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298716103737344
any_adam_object
author Wichura, Michael J.
author_facet Wichura, Michael J.
author_role aut
author_sort Wichura, Michael J.
author_variant m j w mj mjw
building Verbundindex
bvnumber BV043941807
classification_rvk QH 230
SK 840
collection ZDB-20-CBO
contents Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations
ctrlnum (ZDB-20-CBO)CR9780511546822
(OCoLC)967697254
(DE-599)BVBBV043941807
dewey-full 519.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5
dewey-search 519.5
dewey-sort 3519.5
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
doi_str_mv 10.1017/CBO9780511546822
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03538nam a2200589zcb4500</leader><controlfield tag="001">BV043941807</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546822</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54682-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 230</subfield><subfield code="0">(DE-625)141545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wichura, Michael J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The coordinate-free approach to linear models</subfield><subfield code="c">Michael J. Wichura</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 199 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">19</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis of covariance</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kovarianzanalyse</subfield><subfield code="0">(DE-588)4197017-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kovarianzanalyse</subfield><subfield code="0">(DE-588)4197017-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-86842-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350777</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546822</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043941807
illustrated Not Illustrated
indexdate 2024-12-24T05:34:00Z
institution BVB
isbn 9780511546822
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350777
oclc_num 967697254
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xiii, 199 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Cambridge University Press
record_format marc
series2 Cambridge series on statistical and probabilistic mathematics
spelling Wichura, Michael J. Verfasser aut
The coordinate-free approach to linear models Michael J. Wichura
Cambridge Cambridge University Press 2006
1 online resource (xiii, 199 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Cambridge series on statistical and probabilistic mathematics 19
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations
This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations
Linear models (Statistics)
Analysis of variance
Regression analysis
Analysis of covariance
Lineares Modell (DE-588)4134827-8 gnd rswk-swf
Kovarianzanalyse (DE-588)4197017-2 gnd rswk-swf
Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf
Varianzanalyse (DE-588)4187413-4 gnd rswk-swf
Lineares Modell (DE-588)4134827-8 s
Regressionsanalyse (DE-588)4129903-6 s
Varianzanalyse (DE-588)4187413-4 s
Kovarianzanalyse (DE-588)4197017-2 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-86842-6
https://doi.org/10.1017/CBO9780511546822 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Wichura, Michael J.
The coordinate-free approach to linear models
Topics in linear algebra -- Random vectors -- Gauss-Markov estimation -- Normal theory: estimation -- Normal theory: testing -- Analysis of covariance -- Missing observations
Linear models (Statistics)
Analysis of variance
Regression analysis
Analysis of covariance
Lineares Modell (DE-588)4134827-8 gnd
Kovarianzanalyse (DE-588)4197017-2 gnd
Regressionsanalyse (DE-588)4129903-6 gnd
Varianzanalyse (DE-588)4187413-4 gnd
subject_GND (DE-588)4134827-8
(DE-588)4197017-2
(DE-588)4129903-6
(DE-588)4187413-4
title The coordinate-free approach to linear models
title_auth The coordinate-free approach to linear models
title_exact_search The coordinate-free approach to linear models
title_full The coordinate-free approach to linear models Michael J. Wichura
title_fullStr The coordinate-free approach to linear models Michael J. Wichura
title_full_unstemmed The coordinate-free approach to linear models Michael J. Wichura
title_short The coordinate-free approach to linear models
title_sort the coordinate free approach to linear models
topic Linear models (Statistics)
Analysis of variance
Regression analysis
Analysis of covariance
Lineares Modell (DE-588)4134827-8 gnd
Kovarianzanalyse (DE-588)4197017-2 gnd
Regressionsanalyse (DE-588)4129903-6 gnd
Varianzanalyse (DE-588)4187413-4 gnd
topic_facet Linear models (Statistics)
Analysis of variance
Regression analysis
Analysis of covariance
Lineares Modell
Kovarianzanalyse
Regressionsanalyse
Varianzanalyse
url https://doi.org/10.1017/CBO9780511546822
work_keys_str_mv AT wichuramichaelj thecoordinatefreeapproachtolinearmodels