Modules over endomorphism rings

This is an extensive synthesis of recent work in the study of endomorphism rings and their modules, bringing together direct sum decompositions of modules, the class number of an algebraic number field, point set topological spaces, and classical noncommutative localization. The main idea behind the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Faticoni, Theodore G. 1954- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2010
Schriftenreihe:Encyclopedia of mathematics and its applications volume 130
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043941706
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2010 |||| o||u| ||||||eng d
020 |a 9781139087346  |c Online  |9 978-1-139-08734-6 
024 7 |a 10.1017/CBO9781139087346  |2 doi 
035 |a (ZDB-20-CBO)CR9781139087346 
035 |a (OCoLC)862995236 
035 |a (DE-599)BVBBV043941706 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 512.4  |2 22 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
100 1 |a Faticoni, Theodore G.  |d 1954-  |e Verfasser  |4 aut 
245 1 0 |a Modules over endomorphism rings  |c Theodore G. Faticoni 
264 1 |a Cambridge  |b Cambridge University Press  |c 2010 
300 |a 1 online resource (xx, 372 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopedia of mathematics and its applications  |v volume 130 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a 1. Preliminary results -- 2. Class number of an abelian group -- 3. Mayer-Victoris sequences -- 4. Lifting units -- 5. conductor -- 6. Conductors and groups -- 7. Invertible fractional ideals -- 8. L-groups -- 9. Modules and homotopy classes -- 10. Tensor functor equivalences -- 11. Characterizing endomorphisms -- 12. Projective modules -- 13. Finitely generated modules -- 14. Rtffr E-projective groups -- 15. Injective endomorphism modules -- 16. diagram of categories -- 17. Diagrams of abelian groups -- 18. Marginal isomorphisms 
520 |a This is an extensive synthesis of recent work in the study of endomorphism rings and their modules, bringing together direct sum decompositions of modules, the class number of an algebraic number field, point set topological spaces, and classical noncommutative localization. The main idea behind the book is to study modules G over a ring R via their endomorphism ring EndR(G). The author discusses a wealth of results that classify G and EndR(G) via numerous properties, and in particular results from point set topology are used to provide a complete characterization of the direct sum decomposition properties of G. For graduate students this is a useful introduction, while the more experienced mathematician will discover that the book contains results that are not otherwise available. Each chapter contains a list of exercises and problems for future research, which provide a springboard for students entering modern professional mathematics 
650 4 |a Endomorphism rings 
650 4 |a Modules (Algebra) 
650 0 7 |a Modul  |0 (DE-588)4129770-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Endomorphismus  |0 (DE-588)4280121-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Endomorphismus  |0 (DE-588)4280121-7  |D s 
689 0 1 |a Modul  |0 (DE-588)4129770-2  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-19960-5 
856 4 0 |u https://doi.org/10.1017/CBO9781139087346  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029350676 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u https://doi.org/10.1017/CBO9781139087346  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9781139087346  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176883794837504
any_adam_object
author Faticoni, Theodore G. 1954-
author_facet Faticoni, Theodore G. 1954-
author_role aut
author_sort Faticoni, Theodore G. 1954-
author_variant t g f tg tgf
building Verbundindex
bvnumber BV043941706
classification_rvk SK 230
collection ZDB-20-CBO
contents 1. Preliminary results -- 2. Class number of an abelian group -- 3. Mayer-Victoris sequences -- 4. Lifting units -- 5. conductor -- 6. Conductors and groups -- 7. Invertible fractional ideals -- 8. L-groups -- 9. Modules and homotopy classes -- 10. Tensor functor equivalences -- 11. Characterizing endomorphisms -- 12. Projective modules -- 13. Finitely generated modules -- 14. Rtffr E-projective groups -- 15. Injective endomorphism modules -- 16. diagram of categories -- 17. Diagrams of abelian groups -- 18. Marginal isomorphisms
ctrlnum (ZDB-20-CBO)CR9781139087346
(OCoLC)862995236
(DE-599)BVBBV043941706
dewey-full 512.4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.4
dewey-search 512.4
dewey-sort 3512.4
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9781139087346
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03431nmm a2200505zcb4500</leader><controlfield tag="001">BV043941706</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139087346</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-08734-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139087346</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139087346</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862995236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941706</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faticoni, Theodore G.</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modules over endomorphism rings</subfield><subfield code="c">Theodore G. Faticoni</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 372 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 130</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Preliminary results -- 2. Class number of an abelian group -- 3. Mayer-Victoris sequences -- 4. Lifting units -- 5. conductor -- 6. Conductors and groups -- 7. Invertible fractional ideals -- 8. L-groups -- 9. Modules and homotopy classes -- 10. Tensor functor equivalences -- 11. Characterizing endomorphisms -- 12. Projective modules -- 13. Finitely generated modules -- 14. Rtffr E-projective groups -- 15. Injective endomorphism modules -- 16. diagram of categories -- 17. Diagrams of abelian groups -- 18. Marginal isomorphisms</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is an extensive synthesis of recent work in the study of endomorphism rings and their modules, bringing together direct sum decompositions of modules, the class number of an algebraic number field, point set topological spaces, and classical noncommutative localization. The main idea behind the book is to study modules G over a ring R via their endomorphism ring EndR(G). The author discusses a wealth of results that classify G and EndR(G) via numerous properties, and in particular results from point set topology are used to provide a complete characterization of the direct sum decomposition properties of G. For graduate students this is a useful introduction, while the more experienced mathematician will discover that the book contains results that are not otherwise available. Each chapter contains a list of exercises and problems for future research, which provide a springboard for students entering modern professional mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Endomorphism rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endomorphismus</subfield><subfield code="0">(DE-588)4280121-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endomorphismus</subfield><subfield code="0">(DE-588)4280121-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-19960-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139087346</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350676</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139087346</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139087346</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043941706
illustrated Not Illustrated
indexdate 2024-07-10T07:39:16Z
institution BVB
isbn 9781139087346
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350676
oclc_num 862995236
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (xx, 372 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Cambridge University Press
record_format marc
series2 Encyclopedia of mathematics and its applications
spelling Faticoni, Theodore G. 1954- Verfasser aut
Modules over endomorphism rings Theodore G. Faticoni
Cambridge Cambridge University Press 2010
1 online resource (xx, 372 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Encyclopedia of mathematics and its applications volume 130
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
1. Preliminary results -- 2. Class number of an abelian group -- 3. Mayer-Victoris sequences -- 4. Lifting units -- 5. conductor -- 6. Conductors and groups -- 7. Invertible fractional ideals -- 8. L-groups -- 9. Modules and homotopy classes -- 10. Tensor functor equivalences -- 11. Characterizing endomorphisms -- 12. Projective modules -- 13. Finitely generated modules -- 14. Rtffr E-projective groups -- 15. Injective endomorphism modules -- 16. diagram of categories -- 17. Diagrams of abelian groups -- 18. Marginal isomorphisms
This is an extensive synthesis of recent work in the study of endomorphism rings and their modules, bringing together direct sum decompositions of modules, the class number of an algebraic number field, point set topological spaces, and classical noncommutative localization. The main idea behind the book is to study modules G over a ring R via their endomorphism ring EndR(G). The author discusses a wealth of results that classify G and EndR(G) via numerous properties, and in particular results from point set topology are used to provide a complete characterization of the direct sum decomposition properties of G. For graduate students this is a useful introduction, while the more experienced mathematician will discover that the book contains results that are not otherwise available. Each chapter contains a list of exercises and problems for future research, which provide a springboard for students entering modern professional mathematics
Endomorphism rings
Modules (Algebra)
Modul (DE-588)4129770-2 gnd rswk-swf
Endomorphismus (DE-588)4280121-7 gnd rswk-swf
Endomorphismus (DE-588)4280121-7 s
Modul (DE-588)4129770-2 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-19960-5
https://doi.org/10.1017/CBO9781139087346 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Faticoni, Theodore G. 1954-
Modules over endomorphism rings
1. Preliminary results -- 2. Class number of an abelian group -- 3. Mayer-Victoris sequences -- 4. Lifting units -- 5. conductor -- 6. Conductors and groups -- 7. Invertible fractional ideals -- 8. L-groups -- 9. Modules and homotopy classes -- 10. Tensor functor equivalences -- 11. Characterizing endomorphisms -- 12. Projective modules -- 13. Finitely generated modules -- 14. Rtffr E-projective groups -- 15. Injective endomorphism modules -- 16. diagram of categories -- 17. Diagrams of abelian groups -- 18. Marginal isomorphisms
Endomorphism rings
Modules (Algebra)
Modul (DE-588)4129770-2 gnd
Endomorphismus (DE-588)4280121-7 gnd
subject_GND (DE-588)4129770-2
(DE-588)4280121-7
title Modules over endomorphism rings
title_auth Modules over endomorphism rings
title_exact_search Modules over endomorphism rings
title_full Modules over endomorphism rings Theodore G. Faticoni
title_fullStr Modules over endomorphism rings Theodore G. Faticoni
title_full_unstemmed Modules over endomorphism rings Theodore G. Faticoni
title_short Modules over endomorphism rings
title_sort modules over endomorphism rings
topic Endomorphism rings
Modules (Algebra)
Modul (DE-588)4129770-2 gnd
Endomorphismus (DE-588)4280121-7 gnd
topic_facet Endomorphism rings
Modules (Algebra)
Modul
Endomorphismus
url https://doi.org/10.1017/CBO9781139087346
work_keys_str_mv AT faticonitheodoreg modulesoverendomorphismrings