High-order methods for incompressible fluid flow

High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deville, M. O. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2002
Schriftenreihe:Cambridge monographs on applied and computational mathematics 9
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-706
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043941656
003 DE-604
005 20230302
007 cr|uuu---uuuuu
008 161206s2002 xx o|||| 00||| eng d
020 |a 9780511546792  |c Online  |9 978-0-511-54679-2 
024 7 |a 10.1017/CBO9780511546792  |2 doi 
035 |a (ZDB-20-CBO)CR9780511546792 
035 |a (OCoLC)849941069 
035 |a (DE-599)BVBBV043941656 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-706 
082 0 |a 532/.051  |2 21 
084 |a UF 4050  |0 (DE-625)145581:  |2 rvk 
100 1 |a Deville, M. O.  |e Verfasser  |4 aut 
245 1 0 |a High-order methods for incompressible fluid flow  |c M.O. Deville, P.F. Fischer, E.H. Mund 
264 1 |a Cambridge  |b Cambridge University Press  |c 2002 
300 |a 1 online resource (xxvii, 499 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Cambridge monographs on applied and computational mathematics  |v 9 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 0 |t Fluid Mechanics and Computation: An Introduction  |t Viscous Fluid Flows  |t Mass Conservation  |t Momentum Equations  |t Linear Momentum  |t Angular Momentum  |t Energy Conservation  |t Thermodynamics and Constitutive Equations  |t Fluid Flow Equations and Boundary Conditions  |t Isothermal Incompressible Flow  |t Thermal Convection: The Boussinesq Approximation  |t Boundary and Initial Conditions  |t Dimensional Analysis and Reduced Equations  |t Vorticity Equation  |t Simplified Models  |t Turbulence and Challenges  |t Numerical Simulation  |t Hardware Issues  |t Software Issues  |t Algorithms  |t Advantages of High-Order Methods  |t Approximation Methods for Elliptic Problems  |t Variational Form of Boundary-Value Problems  |t Variational Functionals  |t Boundary Conditions  |t Sobolev Spaces and the Lax-Milgram Theorem  |t An Approximation Framework  |t Galerkin Approximations  |t Collocation Approximation  |t Finite-Element Methods  |t The h-Version of Finite Elements  |t The p-Version of Finite Elements  |t Spectral-Element Methods  |t Orthogonal Collocation  |t Orthogonal Collocation in a Monodomain  |t Orthogonal Collocation in a Multidomain  |t Error Estimation  |t Solution Techniques  |t The Conditioning of a Matrix  |t Basic Iterative Methods  |t Preconditioning Schemes of High-Order Methods  |t Iterative Methods Based on Projection  |t A Numerical Example  |t Parabolic and Hyperbolic Problems  |t Time Discretization Schemes  |t Linear Multistep Methods  |t Predictor-Corrector Methods  |t Runge-Kutta Methods  |t Splitting Methods 
520 |a High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference 
650 4 |a Fluid dynamics 
650 0 7 |a Numerische Strömungssimulation  |0 (DE-588)4690080-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Inkompressible Strömung  |0 (DE-588)4129759-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Methode  |0 (DE-588)4155620-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Inkompressible Strömung  |0 (DE-588)4129759-3  |D s 
689 0 1 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Inkompressible Strömung  |0 (DE-588)4129759-3  |D s 
689 1 1 |a Numerische Strömungssimulation  |0 (DE-588)4690080-9  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Fischer, P. F.  |e Sonstige  |4 oth 
700 1 |a Mund, E. H.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-45309-7 
856 4 0 |u https://doi.org/10.1017/CBO9780511546792  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029350626 
966 e |u https://doi.org/10.1017/CBO9780511546792  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511546792  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511546792  |l DE-706  |p ZDB-20-CBO  |q UBY_PDA_CBO_Kauf22  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298695940669440
any_adam_object
author Deville, M. O.
author_facet Deville, M. O.
author_role aut
author_sort Deville, M. O.
author_variant m o d mo mod
building Verbundindex
bvnumber BV043941656
classification_rvk UF 4050
collection ZDB-20-CBO
contents Fluid Mechanics and Computation: An Introduction
Viscous Fluid Flows
Mass Conservation
Momentum Equations
Linear Momentum
Angular Momentum
Energy Conservation
Thermodynamics and Constitutive Equations
Fluid Flow Equations and Boundary Conditions
Isothermal Incompressible Flow
Thermal Convection: The Boussinesq Approximation
Boundary and Initial Conditions
Dimensional Analysis and Reduced Equations
Vorticity Equation
Simplified Models
Turbulence and Challenges
Numerical Simulation
Hardware Issues
Software Issues
Algorithms
Advantages of High-Order Methods
Approximation Methods for Elliptic Problems
Variational Form of Boundary-Value Problems
Variational Functionals
Boundary Conditions
Sobolev Spaces and the Lax-Milgram Theorem
An Approximation Framework
Galerkin Approximations
Collocation Approximation
Finite-Element Methods
The h-Version of Finite Elements
The p-Version of Finite Elements
Spectral-Element Methods
Orthogonal Collocation
Orthogonal Collocation in a Monodomain
Orthogonal Collocation in a Multidomain
Error Estimation
Solution Techniques
The Conditioning of a Matrix
Basic Iterative Methods
Preconditioning Schemes of High-Order Methods
Iterative Methods Based on Projection
A Numerical Example
Parabolic and Hyperbolic Problems
Time Discretization Schemes
Linear Multistep Methods
Predictor-Corrector Methods
Runge-Kutta Methods
Splitting Methods
ctrlnum (ZDB-20-CBO)CR9780511546792
(OCoLC)849941069
(DE-599)BVBBV043941656
dewey-full 532/.051
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 532 - Fluid mechanics
dewey-raw 532/.051
dewey-search 532/.051
dewey-sort 3532 251
dewey-tens 530 - Physics
discipline Physik
doi_str_mv 10.1017/CBO9780511546792
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05124nam a2200589zcb4500</leader><controlfield tag="001">BV043941656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230302 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546792</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54679-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849941069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.051</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4050</subfield><subfield code="0">(DE-625)145581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deville, M. O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-order methods for incompressible fluid flow</subfield><subfield code="c">M.O. Deville, P.F. Fischer, E.H. Mund</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvii, 499 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Fluid Mechanics and Computation: An Introduction</subfield><subfield code="t">Viscous Fluid Flows</subfield><subfield code="t">Mass Conservation</subfield><subfield code="t">Momentum Equations</subfield><subfield code="t">Linear Momentum</subfield><subfield code="t">Angular Momentum</subfield><subfield code="t">Energy Conservation</subfield><subfield code="t">Thermodynamics and Constitutive Equations</subfield><subfield code="t">Fluid Flow Equations and Boundary Conditions</subfield><subfield code="t">Isothermal Incompressible Flow</subfield><subfield code="t">Thermal Convection: The Boussinesq Approximation</subfield><subfield code="t">Boundary and Initial Conditions</subfield><subfield code="t">Dimensional Analysis and Reduced Equations</subfield><subfield code="t">Vorticity Equation</subfield><subfield code="t">Simplified Models</subfield><subfield code="t">Turbulence and Challenges</subfield><subfield code="t">Numerical Simulation</subfield><subfield code="t">Hardware Issues</subfield><subfield code="t">Software Issues</subfield><subfield code="t">Algorithms</subfield><subfield code="t">Advantages of High-Order Methods</subfield><subfield code="t">Approximation Methods for Elliptic Problems</subfield><subfield code="t">Variational Form of Boundary-Value Problems</subfield><subfield code="t">Variational Functionals</subfield><subfield code="t">Boundary Conditions</subfield><subfield code="t">Sobolev Spaces and the Lax-Milgram Theorem</subfield><subfield code="t">An Approximation Framework</subfield><subfield code="t">Galerkin Approximations</subfield><subfield code="t">Collocation Approximation</subfield><subfield code="t">Finite-Element Methods</subfield><subfield code="t">The h-Version of Finite Elements</subfield><subfield code="t">The p-Version of Finite Elements</subfield><subfield code="t">Spectral-Element Methods</subfield><subfield code="t">Orthogonal Collocation</subfield><subfield code="t">Orthogonal Collocation in a Monodomain</subfield><subfield code="t">Orthogonal Collocation in a Multidomain</subfield><subfield code="t">Error Estimation</subfield><subfield code="t">Solution Techniques</subfield><subfield code="t">The Conditioning of a Matrix</subfield><subfield code="t">Basic Iterative Methods</subfield><subfield code="t">Preconditioning Schemes of High-Order Methods</subfield><subfield code="t">Iterative Methods Based on Projection</subfield><subfield code="t">A Numerical Example</subfield><subfield code="t">Parabolic and Hyperbolic Problems</subfield><subfield code="t">Time Discretization Schemes</subfield><subfield code="t">Linear Multistep Methods</subfield><subfield code="t">Predictor-Corrector Methods</subfield><subfield code="t">Runge-Kutta Methods</subfield><subfield code="t">Splitting Methods</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fischer, P. F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mund, E. H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-45309-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350626</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043941656
illustrated Not Illustrated
indexdate 2024-12-24T05:34:00Z
institution BVB
isbn 9780511546792
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350626
oclc_num 849941069
open_access_boolean
owner DE-12
DE-92
DE-706
owner_facet DE-12
DE-92
DE-706
physical 1 online resource (xxvii, 499 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UBY_PDA_CBO_Kauf22
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Cambridge University Press
record_format marc
series2 Cambridge monographs on applied and computational mathematics
spelling Deville, M. O. Verfasser aut
High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund
Cambridge Cambridge University Press 2002
1 online resource (xxvii, 499 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Cambridge monographs on applied and computational mathematics 9
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Fluid Mechanics and Computation: An Introduction Viscous Fluid Flows Mass Conservation Momentum Equations Linear Momentum Angular Momentum Energy Conservation Thermodynamics and Constitutive Equations Fluid Flow Equations and Boundary Conditions Isothermal Incompressible Flow Thermal Convection: The Boussinesq Approximation Boundary and Initial Conditions Dimensional Analysis and Reduced Equations Vorticity Equation Simplified Models Turbulence and Challenges Numerical Simulation Hardware Issues Software Issues Algorithms Advantages of High-Order Methods Approximation Methods for Elliptic Problems Variational Form of Boundary-Value Problems Variational Functionals Boundary Conditions Sobolev Spaces and the Lax-Milgram Theorem An Approximation Framework Galerkin Approximations Collocation Approximation Finite-Element Methods The h-Version of Finite Elements The p-Version of Finite Elements Spectral-Element Methods Orthogonal Collocation Orthogonal Collocation in a Monodomain Orthogonal Collocation in a Multidomain Error Estimation Solution Techniques The Conditioning of a Matrix Basic Iterative Methods Preconditioning Schemes of High-Order Methods Iterative Methods Based on Projection A Numerical Example Parabolic and Hyperbolic Problems Time Discretization Schemes Linear Multistep Methods Predictor-Corrector Methods Runge-Kutta Methods Splitting Methods
High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference
Fluid dynamics
Numerische Strömungssimulation (DE-588)4690080-9 gnd rswk-swf
Inkompressible Strömung (DE-588)4129759-3 gnd rswk-swf
Mathematische Methode (DE-588)4155620-3 gnd rswk-swf
Inkompressible Strömung (DE-588)4129759-3 s
Mathematische Methode (DE-588)4155620-3 s
1\p DE-604
Numerische Strömungssimulation (DE-588)4690080-9 s
2\p DE-604
Fischer, P. F. Sonstige oth
Mund, E. H. Sonstige oth
Erscheint auch als Druckausgabe 978-0-521-45309-7
https://doi.org/10.1017/CBO9780511546792 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Deville, M. O.
High-order methods for incompressible fluid flow
Fluid Mechanics and Computation: An Introduction
Viscous Fluid Flows
Mass Conservation
Momentum Equations
Linear Momentum
Angular Momentum
Energy Conservation
Thermodynamics and Constitutive Equations
Fluid Flow Equations and Boundary Conditions
Isothermal Incompressible Flow
Thermal Convection: The Boussinesq Approximation
Boundary and Initial Conditions
Dimensional Analysis and Reduced Equations
Vorticity Equation
Simplified Models
Turbulence and Challenges
Numerical Simulation
Hardware Issues
Software Issues
Algorithms
Advantages of High-Order Methods
Approximation Methods for Elliptic Problems
Variational Form of Boundary-Value Problems
Variational Functionals
Boundary Conditions
Sobolev Spaces and the Lax-Milgram Theorem
An Approximation Framework
Galerkin Approximations
Collocation Approximation
Finite-Element Methods
The h-Version of Finite Elements
The p-Version of Finite Elements
Spectral-Element Methods
Orthogonal Collocation
Orthogonal Collocation in a Monodomain
Orthogonal Collocation in a Multidomain
Error Estimation
Solution Techniques
The Conditioning of a Matrix
Basic Iterative Methods
Preconditioning Schemes of High-Order Methods
Iterative Methods Based on Projection
A Numerical Example
Parabolic and Hyperbolic Problems
Time Discretization Schemes
Linear Multistep Methods
Predictor-Corrector Methods
Runge-Kutta Methods
Splitting Methods
Fluid dynamics
Numerische Strömungssimulation (DE-588)4690080-9 gnd
Inkompressible Strömung (DE-588)4129759-3 gnd
Mathematische Methode (DE-588)4155620-3 gnd
subject_GND (DE-588)4690080-9
(DE-588)4129759-3
(DE-588)4155620-3
title High-order methods for incompressible fluid flow
title_alt Fluid Mechanics and Computation: An Introduction
Viscous Fluid Flows
Mass Conservation
Momentum Equations
Linear Momentum
Angular Momentum
Energy Conservation
Thermodynamics and Constitutive Equations
Fluid Flow Equations and Boundary Conditions
Isothermal Incompressible Flow
Thermal Convection: The Boussinesq Approximation
Boundary and Initial Conditions
Dimensional Analysis and Reduced Equations
Vorticity Equation
Simplified Models
Turbulence and Challenges
Numerical Simulation
Hardware Issues
Software Issues
Algorithms
Advantages of High-Order Methods
Approximation Methods for Elliptic Problems
Variational Form of Boundary-Value Problems
Variational Functionals
Boundary Conditions
Sobolev Spaces and the Lax-Milgram Theorem
An Approximation Framework
Galerkin Approximations
Collocation Approximation
Finite-Element Methods
The h-Version of Finite Elements
The p-Version of Finite Elements
Spectral-Element Methods
Orthogonal Collocation
Orthogonal Collocation in a Monodomain
Orthogonal Collocation in a Multidomain
Error Estimation
Solution Techniques
The Conditioning of a Matrix
Basic Iterative Methods
Preconditioning Schemes of High-Order Methods
Iterative Methods Based on Projection
A Numerical Example
Parabolic and Hyperbolic Problems
Time Discretization Schemes
Linear Multistep Methods
Predictor-Corrector Methods
Runge-Kutta Methods
Splitting Methods
title_auth High-order methods for incompressible fluid flow
title_exact_search High-order methods for incompressible fluid flow
title_full High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund
title_fullStr High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund
title_full_unstemmed High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund
title_short High-order methods for incompressible fluid flow
title_sort high order methods for incompressible fluid flow
topic Fluid dynamics
Numerische Strömungssimulation (DE-588)4690080-9 gnd
Inkompressible Strömung (DE-588)4129759-3 gnd
Mathematische Methode (DE-588)4155620-3 gnd
topic_facet Fluid dynamics
Numerische Strömungssimulation
Inkompressible Strömung
Mathematische Methode
url https://doi.org/10.1017/CBO9780511546792
work_keys_str_mv AT devillemo highordermethodsforincompressiblefluidflow
AT fischerpf highordermethodsforincompressiblefluidflow
AT mundeh highordermethodsforincompressiblefluidflow