High-order methods for incompressible fluid flow
High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in comple...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
9 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-706 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043941656 | ||
003 | DE-604 | ||
005 | 20230302 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 xx o|||| 00||| eng d | ||
020 | |a 9780511546792 |c Online |9 978-0-511-54679-2 | ||
024 | 7 | |a 10.1017/CBO9780511546792 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546792 | ||
035 | |a (OCoLC)849941069 | ||
035 | |a (DE-599)BVBBV043941656 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-706 | ||
082 | 0 | |a 532/.051 |2 21 | |
084 | |a UF 4050 |0 (DE-625)145581: |2 rvk | ||
100 | 1 | |a Deville, M. O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a High-order methods for incompressible fluid flow |c M.O. Deville, P.F. Fischer, E.H. Mund |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xxvii, 499 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 9 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Fluid Mechanics and Computation: An Introduction |t Viscous Fluid Flows |t Mass Conservation |t Momentum Equations |t Linear Momentum |t Angular Momentum |t Energy Conservation |t Thermodynamics and Constitutive Equations |t Fluid Flow Equations and Boundary Conditions |t Isothermal Incompressible Flow |t Thermal Convection: The Boussinesq Approximation |t Boundary and Initial Conditions |t Dimensional Analysis and Reduced Equations |t Vorticity Equation |t Simplified Models |t Turbulence and Challenges |t Numerical Simulation |t Hardware Issues |t Software Issues |t Algorithms |t Advantages of High-Order Methods |t Approximation Methods for Elliptic Problems |t Variational Form of Boundary-Value Problems |t Variational Functionals |t Boundary Conditions |t Sobolev Spaces and the Lax-Milgram Theorem |t An Approximation Framework |t Galerkin Approximations |t Collocation Approximation |t Finite-Element Methods |t The h-Version of Finite Elements |t The p-Version of Finite Elements |t Spectral-Element Methods |t Orthogonal Collocation |t Orthogonal Collocation in a Monodomain |t Orthogonal Collocation in a Multidomain |t Error Estimation |t Solution Techniques |t The Conditioning of a Matrix |t Basic Iterative Methods |t Preconditioning Schemes of High-Order Methods |t Iterative Methods Based on Projection |t A Numerical Example |t Parabolic and Hyperbolic Problems |t Time Discretization Schemes |t Linear Multistep Methods |t Predictor-Corrector Methods |t Runge-Kutta Methods |t Splitting Methods |
520 | |a High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference | ||
650 | 4 | |a Fluid dynamics | |
650 | 0 | 7 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inkompressible Strömung |0 (DE-588)4129759-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Inkompressible Strömung |0 (DE-588)4129759-3 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Inkompressible Strömung |0 (DE-588)4129759-3 |D s |
689 | 1 | 1 | |a Numerische Strömungssimulation |0 (DE-588)4690080-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Fischer, P. F. |e Sonstige |4 oth | |
700 | 1 | |a Mund, E. H. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-45309-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546792 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029350626 | |
966 | e | |u https://doi.org/10.1017/CBO9780511546792 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546792 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546792 |l DE-706 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf22 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819298695940669440 |
---|---|
any_adam_object | |
author | Deville, M. O. |
author_facet | Deville, M. O. |
author_role | aut |
author_sort | Deville, M. O. |
author_variant | m o d mo mod |
building | Verbundindex |
bvnumber | BV043941656 |
classification_rvk | UF 4050 |
collection | ZDB-20-CBO |
contents | Fluid Mechanics and Computation: An Introduction Viscous Fluid Flows Mass Conservation Momentum Equations Linear Momentum Angular Momentum Energy Conservation Thermodynamics and Constitutive Equations Fluid Flow Equations and Boundary Conditions Isothermal Incompressible Flow Thermal Convection: The Boussinesq Approximation Boundary and Initial Conditions Dimensional Analysis and Reduced Equations Vorticity Equation Simplified Models Turbulence and Challenges Numerical Simulation Hardware Issues Software Issues Algorithms Advantages of High-Order Methods Approximation Methods for Elliptic Problems Variational Form of Boundary-Value Problems Variational Functionals Boundary Conditions Sobolev Spaces and the Lax-Milgram Theorem An Approximation Framework Galerkin Approximations Collocation Approximation Finite-Element Methods The h-Version of Finite Elements The p-Version of Finite Elements Spectral-Element Methods Orthogonal Collocation Orthogonal Collocation in a Monodomain Orthogonal Collocation in a Multidomain Error Estimation Solution Techniques The Conditioning of a Matrix Basic Iterative Methods Preconditioning Schemes of High-Order Methods Iterative Methods Based on Projection A Numerical Example Parabolic and Hyperbolic Problems Time Discretization Schemes Linear Multistep Methods Predictor-Corrector Methods Runge-Kutta Methods Splitting Methods |
ctrlnum | (ZDB-20-CBO)CR9780511546792 (OCoLC)849941069 (DE-599)BVBBV043941656 |
dewey-full | 532/.051 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.051 |
dewey-search | 532/.051 |
dewey-sort | 3532 251 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511546792 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05124nam a2200589zcb4500</leader><controlfield tag="001">BV043941656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230302 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546792</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54679-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546792</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849941069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.051</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4050</subfield><subfield code="0">(DE-625)145581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deville, M. O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-order methods for incompressible fluid flow</subfield><subfield code="c">M.O. Deville, P.F. Fischer, E.H. Mund</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvii, 499 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Fluid Mechanics and Computation: An Introduction</subfield><subfield code="t">Viscous Fluid Flows</subfield><subfield code="t">Mass Conservation</subfield><subfield code="t">Momentum Equations</subfield><subfield code="t">Linear Momentum</subfield><subfield code="t">Angular Momentum</subfield><subfield code="t">Energy Conservation</subfield><subfield code="t">Thermodynamics and Constitutive Equations</subfield><subfield code="t">Fluid Flow Equations and Boundary Conditions</subfield><subfield code="t">Isothermal Incompressible Flow</subfield><subfield code="t">Thermal Convection: The Boussinesq Approximation</subfield><subfield code="t">Boundary and Initial Conditions</subfield><subfield code="t">Dimensional Analysis and Reduced Equations</subfield><subfield code="t">Vorticity Equation</subfield><subfield code="t">Simplified Models</subfield><subfield code="t">Turbulence and Challenges</subfield><subfield code="t">Numerical Simulation</subfield><subfield code="t">Hardware Issues</subfield><subfield code="t">Software Issues</subfield><subfield code="t">Algorithms</subfield><subfield code="t">Advantages of High-Order Methods</subfield><subfield code="t">Approximation Methods for Elliptic Problems</subfield><subfield code="t">Variational Form of Boundary-Value Problems</subfield><subfield code="t">Variational Functionals</subfield><subfield code="t">Boundary Conditions</subfield><subfield code="t">Sobolev Spaces and the Lax-Milgram Theorem</subfield><subfield code="t">An Approximation Framework</subfield><subfield code="t">Galerkin Approximations</subfield><subfield code="t">Collocation Approximation</subfield><subfield code="t">Finite-Element Methods</subfield><subfield code="t">The h-Version of Finite Elements</subfield><subfield code="t">The p-Version of Finite Elements</subfield><subfield code="t">Spectral-Element Methods</subfield><subfield code="t">Orthogonal Collocation</subfield><subfield code="t">Orthogonal Collocation in a Monodomain</subfield><subfield code="t">Orthogonal Collocation in a Multidomain</subfield><subfield code="t">Error Estimation</subfield><subfield code="t">Solution Techniques</subfield><subfield code="t">The Conditioning of a Matrix</subfield><subfield code="t">Basic Iterative Methods</subfield><subfield code="t">Preconditioning Schemes of High-Order Methods</subfield><subfield code="t">Iterative Methods Based on Projection</subfield><subfield code="t">A Numerical Example</subfield><subfield code="t">Parabolic and Hyperbolic Problems</subfield><subfield code="t">Time Discretization Schemes</subfield><subfield code="t">Linear Multistep Methods</subfield><subfield code="t">Predictor-Corrector Methods</subfield><subfield code="t">Runge-Kutta Methods</subfield><subfield code="t">Splitting Methods</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inkompressible Strömung</subfield><subfield code="0">(DE-588)4129759-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerische Strömungssimulation</subfield><subfield code="0">(DE-588)4690080-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fischer, P. F.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mund, E. H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-45309-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350626</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546792</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043941656 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T05:34:00Z |
institution | BVB |
isbn | 9780511546792 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029350626 |
oclc_num | 849941069 |
open_access_boolean | |
owner | DE-12 DE-92 DE-706 |
owner_facet | DE-12 DE-92 DE-706 |
physical | 1 online resource (xxvii, 499 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBY_PDA_CBO_Kauf22 |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Deville, M. O. Verfasser aut High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund Cambridge Cambridge University Press 2002 1 online resource (xxvii, 499 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 9 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Fluid Mechanics and Computation: An Introduction Viscous Fluid Flows Mass Conservation Momentum Equations Linear Momentum Angular Momentum Energy Conservation Thermodynamics and Constitutive Equations Fluid Flow Equations and Boundary Conditions Isothermal Incompressible Flow Thermal Convection: The Boussinesq Approximation Boundary and Initial Conditions Dimensional Analysis and Reduced Equations Vorticity Equation Simplified Models Turbulence and Challenges Numerical Simulation Hardware Issues Software Issues Algorithms Advantages of High-Order Methods Approximation Methods for Elliptic Problems Variational Form of Boundary-Value Problems Variational Functionals Boundary Conditions Sobolev Spaces and the Lax-Milgram Theorem An Approximation Framework Galerkin Approximations Collocation Approximation Finite-Element Methods The h-Version of Finite Elements The p-Version of Finite Elements Spectral-Element Methods Orthogonal Collocation Orthogonal Collocation in a Monodomain Orthogonal Collocation in a Multidomain Error Estimation Solution Techniques The Conditioning of a Matrix Basic Iterative Methods Preconditioning Schemes of High-Order Methods Iterative Methods Based on Projection A Numerical Example Parabolic and Hyperbolic Problems Time Discretization Schemes Linear Multistep Methods Predictor-Corrector Methods Runge-Kutta Methods Splitting Methods High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular attention given to enforcement of incompressibility. Advanced discretizations, implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications. Computer scientists, engineers and applied mathematicians interested in developing software for solving flow problems will find this book a valuable reference Fluid dynamics Numerische Strömungssimulation (DE-588)4690080-9 gnd rswk-swf Inkompressible Strömung (DE-588)4129759-3 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Inkompressible Strömung (DE-588)4129759-3 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Numerische Strömungssimulation (DE-588)4690080-9 s 2\p DE-604 Fischer, P. F. Sonstige oth Mund, E. H. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-45309-7 https://doi.org/10.1017/CBO9780511546792 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Deville, M. O. High-order methods for incompressible fluid flow Fluid Mechanics and Computation: An Introduction Viscous Fluid Flows Mass Conservation Momentum Equations Linear Momentum Angular Momentum Energy Conservation Thermodynamics and Constitutive Equations Fluid Flow Equations and Boundary Conditions Isothermal Incompressible Flow Thermal Convection: The Boussinesq Approximation Boundary and Initial Conditions Dimensional Analysis and Reduced Equations Vorticity Equation Simplified Models Turbulence and Challenges Numerical Simulation Hardware Issues Software Issues Algorithms Advantages of High-Order Methods Approximation Methods for Elliptic Problems Variational Form of Boundary-Value Problems Variational Functionals Boundary Conditions Sobolev Spaces and the Lax-Milgram Theorem An Approximation Framework Galerkin Approximations Collocation Approximation Finite-Element Methods The h-Version of Finite Elements The p-Version of Finite Elements Spectral-Element Methods Orthogonal Collocation Orthogonal Collocation in a Monodomain Orthogonal Collocation in a Multidomain Error Estimation Solution Techniques The Conditioning of a Matrix Basic Iterative Methods Preconditioning Schemes of High-Order Methods Iterative Methods Based on Projection A Numerical Example Parabolic and Hyperbolic Problems Time Discretization Schemes Linear Multistep Methods Predictor-Corrector Methods Runge-Kutta Methods Splitting Methods Fluid dynamics Numerische Strömungssimulation (DE-588)4690080-9 gnd Inkompressible Strömung (DE-588)4129759-3 gnd Mathematische Methode (DE-588)4155620-3 gnd |
subject_GND | (DE-588)4690080-9 (DE-588)4129759-3 (DE-588)4155620-3 |
title | High-order methods for incompressible fluid flow |
title_alt | Fluid Mechanics and Computation: An Introduction Viscous Fluid Flows Mass Conservation Momentum Equations Linear Momentum Angular Momentum Energy Conservation Thermodynamics and Constitutive Equations Fluid Flow Equations and Boundary Conditions Isothermal Incompressible Flow Thermal Convection: The Boussinesq Approximation Boundary and Initial Conditions Dimensional Analysis and Reduced Equations Vorticity Equation Simplified Models Turbulence and Challenges Numerical Simulation Hardware Issues Software Issues Algorithms Advantages of High-Order Methods Approximation Methods for Elliptic Problems Variational Form of Boundary-Value Problems Variational Functionals Boundary Conditions Sobolev Spaces and the Lax-Milgram Theorem An Approximation Framework Galerkin Approximations Collocation Approximation Finite-Element Methods The h-Version of Finite Elements The p-Version of Finite Elements Spectral-Element Methods Orthogonal Collocation Orthogonal Collocation in a Monodomain Orthogonal Collocation in a Multidomain Error Estimation Solution Techniques The Conditioning of a Matrix Basic Iterative Methods Preconditioning Schemes of High-Order Methods Iterative Methods Based on Projection A Numerical Example Parabolic and Hyperbolic Problems Time Discretization Schemes Linear Multistep Methods Predictor-Corrector Methods Runge-Kutta Methods Splitting Methods |
title_auth | High-order methods for incompressible fluid flow |
title_exact_search | High-order methods for incompressible fluid flow |
title_full | High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund |
title_fullStr | High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund |
title_full_unstemmed | High-order methods for incompressible fluid flow M.O. Deville, P.F. Fischer, E.H. Mund |
title_short | High-order methods for incompressible fluid flow |
title_sort | high order methods for incompressible fluid flow |
topic | Fluid dynamics Numerische Strömungssimulation (DE-588)4690080-9 gnd Inkompressible Strömung (DE-588)4129759-3 gnd Mathematische Methode (DE-588)4155620-3 gnd |
topic_facet | Fluid dynamics Numerische Strömungssimulation Inkompressible Strömung Mathematische Methode |
url | https://doi.org/10.1017/CBO9780511546792 |
work_keys_str_mv | AT devillemo highordermethodsforincompressiblefluidflow AT fischerpf highordermethodsforincompressiblefluidflow AT mundeh highordermethodsforincompressiblefluidflow |