Mixed Hodge structures and singularities

This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kulikov, Valentin S. 1948- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1998
Schriftenreihe:Cambridge tracts in mathematics 132
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-355
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043941616
003 DE-604
005 20190401
007 cr|uuu---uuuuu
008 161206s1998 xx o|||| 00||| eng d
020 |a 9780511758928  |c Online  |9 978-0-511-75892-8 
024 7 |a 10.1017/CBO9780511758928  |2 doi 
035 |a (ZDB-20-CBO)CR9780511758928 
035 |a (OCoLC)967679231 
035 |a (DE-599)BVBBV043941616 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-355 
082 0 |a 516.3/5  |2 21 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
084 |a SK 320  |0 (DE-625)143231:  |2 rvk 
100 1 |a Kulikov, Valentin S.  |d 1948-  |e Verfasser  |0 (DE-588)173143164  |4 aut 
245 1 0 |a Mixed Hodge structures and singularities  |c Valentine S. Kulikov 
246 1 3 |a Mixed Hodge Structures & Singularities 
264 1 |a Cambridge  |b Cambridge University Press  |c 1998 
300 |a 1 Online-Ressource (xxi, 186 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Cambridge tracts in mathematics  |v 132 
520 |a This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss–Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This will be an excellent resource for all researchers whose interests lie in singularity theory, and algebraic or differential geometry 
650 4 |a Hodge theory 
650 4 |a Singularities (Mathematics) 
650 0 7 |a Hodge-Theorie  |0 (DE-588)4135967-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Singularität  |g Mathematik  |0 (DE-588)4077459-4  |D s 
689 0 1 |a Hodge-Theorie  |0 (DE-588)4135967-7  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-521-62060-4 
856 4 0 |u https://doi.org/10.1017/CBO9780511758928  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029350586 
966 e |u https://doi.org/10.1017/CBO9780511758928  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511758928  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511758928  |l DE-355  |p ZDB-20-CBO  |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018)  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298695852589056
any_adam_object
author Kulikov, Valentin S. 1948-
author_GND (DE-588)173143164
author_facet Kulikov, Valentin S. 1948-
author_role aut
author_sort Kulikov, Valentin S. 1948-
author_variant v s k vs vsk
building Verbundindex
bvnumber BV043941616
classification_rvk SK 240
SK 320
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9780511758928
(OCoLC)967679231
(DE-599)BVBBV043941616
dewey-full 516.3/5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/5
dewey-search 516.3/5
dewey-sort 3516.3 15
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511758928
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02890nam a2200505zcb4500</leader><controlfield tag="001">BV043941616</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190401 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511758928</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-75892-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511758928</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511758928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967679231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941616</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulikov, Valentin S.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173143164</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mixed Hodge structures and singularities</subfield><subfield code="c">Valentine S. Kulikov</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Mixed Hodge Structures &amp; Singularities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 186 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">132</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss–Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This will be an excellent resource for all researchers whose interests lie in singularity theory, and algebraic or differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodge theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-62060-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511758928</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350586</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511758928</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511758928</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511758928</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043941616
illustrated Not Illustrated
indexdate 2024-12-24T05:34:00Z
institution BVB
isbn 9780511758928
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350586
oclc_num 967679231
open_access_boolean
owner DE-12
DE-92
DE-355
DE-BY-UBR
owner_facet DE-12
DE-92
DE-355
DE-BY-UBR
physical 1 Online-Ressource (xxi, 186 Seiten)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018)
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Cambridge University Press
record_format marc
series2 Cambridge tracts in mathematics
spelling Kulikov, Valentin S. 1948- Verfasser (DE-588)173143164 aut
Mixed Hodge structures and singularities Valentine S. Kulikov
Mixed Hodge Structures & Singularities
Cambridge Cambridge University Press 1998
1 Online-Ressource (xxi, 186 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
Cambridge tracts in mathematics 132
This 1998 book is both an introduction to, and a survey of, some topics of singularity theory; in particular the studying of singularities by means of differential forms. Here some ideas and notions that arose in global algebraic geometry, namely mixed Hodge structures and the theory of period maps, are developed in the local situation to study the case of isolated singularities of holomorphic functions. The author introduces the Gauss–Manin connection on the vanishing cohomology of a singularity, that is on the cohomology fibration associated to the Milnor fibration, and draws on the work of Brieskorn and Steenbrink to calculate this connection, and the limit mixed Hodge structure. This will be an excellent resource for all researchers whose interests lie in singularity theory, and algebraic or differential geometry
Hodge theory
Singularities (Mathematics)
Hodge-Theorie (DE-588)4135967-7 gnd rswk-swf
Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf
Singularität Mathematik (DE-588)4077459-4 s
Hodge-Theorie (DE-588)4135967-7 s
DE-604
Erscheint auch als Druck-Ausgabe 978-0-521-62060-4
https://doi.org/10.1017/CBO9780511758928 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Kulikov, Valentin S. 1948-
Mixed Hodge structures and singularities
Hodge theory
Singularities (Mathematics)
Hodge-Theorie (DE-588)4135967-7 gnd
Singularität Mathematik (DE-588)4077459-4 gnd
subject_GND (DE-588)4135967-7
(DE-588)4077459-4
title Mixed Hodge structures and singularities
title_alt Mixed Hodge Structures & Singularities
title_auth Mixed Hodge structures and singularities
title_exact_search Mixed Hodge structures and singularities
title_full Mixed Hodge structures and singularities Valentine S. Kulikov
title_fullStr Mixed Hodge structures and singularities Valentine S. Kulikov
title_full_unstemmed Mixed Hodge structures and singularities Valentine S. Kulikov
title_short Mixed Hodge structures and singularities
title_sort mixed hodge structures and singularities
topic Hodge theory
Singularities (Mathematics)
Hodge-Theorie (DE-588)4135967-7 gnd
Singularität Mathematik (DE-588)4077459-4 gnd
topic_facet Hodge theory
Singularities (Mathematics)
Hodge-Theorie
Singularität Mathematik
url https://doi.org/10.1017/CBO9780511758928
work_keys_str_mv AT kulikovvalentins mixedhodgestructuresandsingularities
AT kulikovvalentins mixedhodgestructuressingularities