Non-abelian fundamental groups in Iwasawa theory

Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Coates, J. (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2011
Schriftenreihe:London Mathematical Society lecture note series 393
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043941245
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2011 |||| o||u| ||||||eng d
020 |a 9780511984440  |c Online  |9 978-0-511-98444-0 
024 7 |a 10.1017/CBO9780511984440  |2 doi 
035 |a (ZDB-20-CBO)CR9780511984440 
035 |a (OCoLC)992906332 
035 |a (DE-599)BVBBV043941245 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 512.7/4  |2 23 
084 |a SI 320  |0 (DE-625)143123:  |2 rvk 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
245 1 0 |a Non-abelian fundamental groups in Iwasawa theory  |c edited by John Coates [and others] 
246 1 3 |a Non-abelian Fundamental Groups & Iwasawa Theory 
264 1 |a Cambridge  |b Cambridge University Press  |c 2011 
300 |a 1 online resource (ix, 310 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society lecture note series  |v 393 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak 
520 |a Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry 
650 4 |a Iwasawa theory 
650 4 |a Non-Abelian groups 
650 0 7 |a Iwasawa-Theorie  |0 (DE-588)4384573-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtabelsche Gruppe  |0 (DE-588)4340007-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
689 0 0 |a Nichtabelsche Gruppe  |0 (DE-588)4340007-3  |D s 
689 0 1 |a Iwasawa-Theorie  |0 (DE-588)4384573-3  |D s 
689 0 |5 DE-604 
700 1 |a Coates, J.  |4 edt 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-1-107-64885-2 
856 4 0 |u https://doi.org/10.1017/CBO9780511984440  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029350215 
966 e |u https://doi.org/10.1017/CBO9780511984440  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511984440  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176882679152641
any_adam_object
author2 Coates, J.
author2_role edt
author2_variant j c jc
author_facet Coates, J.
building Verbundindex
bvnumber BV043941245
classification_rvk SI 320
SK 260
collection ZDB-20-CBO
contents Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak
ctrlnum (ZDB-20-CBO)CR9780511984440
(OCoLC)992906332
(DE-599)BVBBV043941245
dewey-full 512.7/4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7/4
dewey-search 512.7/4
dewey-sort 3512.7 14
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511984440
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03914nmm a2200541zcb4500</leader><controlfield tag="001">BV043941245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511984440</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98444-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511984440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511984440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992906332</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043941245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-abelian fundamental groups in Iwasawa theory</subfield><subfield code="c">edited by John Coates [and others]</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Non-abelian Fundamental Groups &amp; Iwasawa Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 310 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">393</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iwasawa theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-Abelian groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtabelsche Gruppe</subfield><subfield code="0">(DE-588)4340007-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtabelsche Gruppe</subfield><subfield code="0">(DE-588)4340007-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Iwasawa-Theorie</subfield><subfield code="0">(DE-588)4384573-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coates, J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-64885-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029350215</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984440</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Aufsatzsammlung
Konferenzschrift
id DE-604.BV043941245
illustrated Not Illustrated
indexdate 2024-07-10T07:39:15Z
institution BVB
isbn 9780511984440
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029350215
oclc_num 992906332
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (ix, 310 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others]
Non-abelian Fundamental Groups & Iwasawa Theory
Cambridge Cambridge University Press 2011
1 online resource (ix, 310 pages)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society lecture note series 393
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak
Number theory currently has at least three different perspectives on non-abelian phenomena: the Langlands programme, non-commutative Iwasawa theory and anabelian geometry. In the second half of 2009, experts from each of these three areas gathered at the Isaac Newton Institute in Cambridge to explain the latest advances in their research and to investigate possible avenues of future investigation and collaboration. For those in attendance, the overwhelming impression was that number theory is going through a tumultuous period of theory-building and experimentation analogous to the late 19th century, when many different special reciprocity laws of abelian class field theory were formulated before knowledge of the Artin–Takagi theory. Non-abelian Fundamental Groups and Iwasawa Theory presents the state of the art in theorems, conjectures and speculations that point the way towards a new synthesis, an as-yet-undiscovered unified theory of non-abelian arithmetic geometry
Iwasawa theory
Non-Abelian groups
Iwasawa-Theorie (DE-588)4384573-3 gnd rswk-swf
Nichtabelsche Gruppe (DE-588)4340007-3 gnd rswk-swf
(DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)1071861417 Konferenzschrift gnd-content
Nichtabelsche Gruppe (DE-588)4340007-3 s
Iwasawa-Theorie (DE-588)4384573-3 s
DE-604
Coates, J. edt
Erscheint auch als Druckausgabe 978-1-107-64885-2
https://doi.org/10.1017/CBO9780511984440 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Non-abelian fundamental groups in Iwasawa theory
Lectures on anabelian phenomena in geometry and arithmetic / Florian Pop -- On Galois rigidity of fundamental groups of algebraic curves Hiroaki Nakamura -- Around the Grothendieck anabelian section conjecture Mohamed Saïdi -- From the classical to the noncommutative Iwasawa theory (for totally real number fields) Mahesh Kakde -- On the MH(G)-conjecture J. Coates and R. Sujatha -- Galois theory and Diophantine geometry Minhyong Kim; 7. Potential modularity -- a survey Kevin Buzzard; 8. Remarks on some locally Qp-analytic representations of GL -- (F) in the crystalline case Christophe Breuil -- Completed cohomology -- a survey Frank Calegari and Matthew Emerton -- Tensor and homotopy criteria for functional equations of -- adic and classical iterated integrals Hiroaki Nakamura and Zdzisław Wojtkowiak
Iwasawa theory
Non-Abelian groups
Iwasawa-Theorie (DE-588)4384573-3 gnd
Nichtabelsche Gruppe (DE-588)4340007-3 gnd
subject_GND (DE-588)4384573-3
(DE-588)4340007-3
(DE-588)4143413-4
(DE-588)1071861417
title Non-abelian fundamental groups in Iwasawa theory
title_alt Non-abelian Fundamental Groups & Iwasawa Theory
title_auth Non-abelian fundamental groups in Iwasawa theory
title_exact_search Non-abelian fundamental groups in Iwasawa theory
title_full Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others]
title_fullStr Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others]
title_full_unstemmed Non-abelian fundamental groups in Iwasawa theory edited by John Coates [and others]
title_short Non-abelian fundamental groups in Iwasawa theory
title_sort non abelian fundamental groups in iwasawa theory
topic Iwasawa theory
Non-Abelian groups
Iwasawa-Theorie (DE-588)4384573-3 gnd
Nichtabelsche Gruppe (DE-588)4340007-3 gnd
topic_facet Iwasawa theory
Non-Abelian groups
Iwasawa-Theorie
Nichtabelsche Gruppe
Aufsatzsammlung
Konferenzschrift
url https://doi.org/10.1017/CBO9780511984440
work_keys_str_mv AT coatesj nonabelianfundamentalgroupsiniwasawatheory
AT coatesj nonabelianfundamentalgroupsiwasawatheory