An introduction to twistor theory

This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huggett, Stephen 1954- (VerfasserIn), Tod, K. P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1994
Ausgabe:Second edition
Schriftenreihe:London Mathematical Society student texts 4
Schlagworte:
Online-Zugang:BSB01
FHN01
UBR01
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043940686
003 DE-604
005 20190603
007 cr|uuu---uuuuu
008 161206s1994 |||| o||u| ||||||eng d
020 |a 9780511624018  |c Online  |9 978-0-511-62401-8 
024 7 |a 10.1017/CBO9780511624018  |2 doi 
035 |a (ZDB-20-CBO)CR9780511624018 
035 |a (OCoLC)967678776 
035 |a (DE-599)BVBBV043940686 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-355 
082 0 |a 530.1/42/01516362  |2 20 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
100 1 |a Huggett, Stephen  |d 1954-  |e Verfasser  |0 (DE-588)122533968  |4 aut 
245 1 0 |a An introduction to twistor theory  |c S.A. Huggett, K.P. Tod 
250 |a Second edition 
264 1 |a Cambridge  |b Cambridge University Press  |c 1994 
300 |a 1 Online-Ressource (xii, 178 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society student texts  |v 4 
520 |a This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics which has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics 
650 4 |a Twistor theory 
650 0 7 |a Twistor  |0 (DE-588)4186504-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Twistor  |0 (DE-588)4186504-2  |D s 
689 0 |5 DE-604 
700 1 |a Tod, K. P.  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-521-45157-4 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-521-45689-0 
856 4 0 |u https://doi.org/10.1017/CBO9780511624018  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
999 |a oai:aleph.bib-bvb.de:BVB01-029349656 
966 e |u https://doi.org/10.1017/CBO9780511624018  |l BSB01  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511624018  |l FHN01  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511624018  |l UBR01  |p ZDB-20-CBO  |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018)  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1804176881520476160
any_adam_object
author Huggett, Stephen 1954-
Tod, K. P.
author_GND (DE-588)122533968
author_facet Huggett, Stephen 1954-
Tod, K. P.
author_role aut
aut
author_sort Huggett, Stephen 1954-
author_variant s h sh
k p t kp kpt
building Verbundindex
bvnumber BV043940686
classification_rvk SK 370
SK 350
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9780511624018
(OCoLC)967678776
(DE-599)BVBBV043940686
dewey-full 530.1/42/01516362
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.1/42/01516362
dewey-search 530.1/42/01516362
dewey-sort 3530.1 242 71516362
dewey-tens 530 - Physics
discipline Physik
Mathematik
doi_str_mv 10.1017/CBO9780511624018
edition Second edition
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02782nmm a2200493zcb4500</leader><controlfield tag="001">BV043940686</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190603 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511624018</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62401-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511624018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511624018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967678776</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940686</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/42/01516362</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huggett, Stephen</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122533968</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to twistor theory</subfield><subfield code="c">S.A. Huggett, K.P. Tod</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 178 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society student texts</subfield><subfield code="v">4</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics which has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twistor theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tod, K. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-45157-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-45689-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511624018</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349656</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624018</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624018</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511624018</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043940686
illustrated Not Illustrated
indexdate 2024-07-10T07:39:14Z
institution BVB
isbn 9780511624018
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029349656
oclc_num 967678776
open_access_boolean
owner DE-12
DE-92
DE-355
DE-BY-UBR
owner_facet DE-12
DE-92
DE-355
DE-BY-UBR
physical 1 Online-Ressource (xii, 178 Seiten)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018)
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society student texts
spelling Huggett, Stephen 1954- Verfasser (DE-588)122533968 aut
An introduction to twistor theory S.A. Huggett, K.P. Tod
Second edition
Cambridge Cambridge University Press 1994
1 Online-Ressource (xii, 178 Seiten)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society student texts 4
This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics which has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics
Twistor theory
Twistor (DE-588)4186504-2 gnd rswk-swf
Twistor (DE-588)4186504-2 s
DE-604
Tod, K. P. Verfasser aut
Erscheint auch als Druck-Ausgabe 978-0-521-45157-4
Erscheint auch als Druck-Ausgabe 978-0-521-45689-0
https://doi.org/10.1017/CBO9780511624018 Verlag URL des Erstveröffentlichers Volltext
spellingShingle Huggett, Stephen 1954-
Tod, K. P.
An introduction to twistor theory
Twistor theory
Twistor (DE-588)4186504-2 gnd
subject_GND (DE-588)4186504-2
title An introduction to twistor theory
title_auth An introduction to twistor theory
title_exact_search An introduction to twistor theory
title_full An introduction to twistor theory S.A. Huggett, K.P. Tod
title_fullStr An introduction to twistor theory S.A. Huggett, K.P. Tod
title_full_unstemmed An introduction to twistor theory S.A. Huggett, K.P. Tod
title_short An introduction to twistor theory
title_sort an introduction to twistor theory
topic Twistor theory
Twistor (DE-588)4186504-2 gnd
topic_facet Twistor theory
Twistor
url https://doi.org/10.1017/CBO9780511624018
work_keys_str_mv AT huggettstephen anintroductiontotwistortheory
AT todkp anintroductiontotwistortheory