Applied asymptotics case studies in small-sample statistics

In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Brazzale, A. R. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2007
Schriftenreihe:Cambridge series on statistical and probabilistic mathematics 23
Schlagworte:
Online-Zugang:DE-12
DE-92
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043940644
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161206s2007 xx o|||| 00||| eng d
020 |a 9780511611131  |c Online  |9 978-0-511-61113-1 
024 7 |a 10.1017/CBO9780511611131  |2 doi 
035 |a (ZDB-20-CBO)CR9780511611131 
035 |a (OCoLC)667889545 
035 |a (DE-599)BVBBV043940644 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92 
082 0 |a 519.6  |2 22 
084 |a QH 231  |0 (DE-625)141546:  |2 rvk 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
100 1 |a Brazzale, A. R.  |e Verfasser  |4 aut 
245 1 0 |a Applied asymptotics  |b case studies in small-sample statistics  |c A.R. Brazzale, A.C. Davison, N. Reid 
264 1 |a Cambridge  |b Cambridge University Press  |c 2007 
300 |a 1 online resource (viii, 236 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Cambridge series on statistical and probabilistic mathematics  |v 23 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
520 |a In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods 
650 4 |a Statistical hypothesis testing / Asymptotic theory 
650 0 7 |a Statistische Hypothese  |0 (DE-588)4182959-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Likelihood-Funktion  |0 (DE-588)4657256-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Asymptotische Statistik  |0 (DE-588)4203167-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Asymptotische Statistik  |0 (DE-588)4203167-9  |D s 
689 0 1 |a Statistische Hypothese  |0 (DE-588)4182959-1  |D s 
689 0 2 |a Likelihood-Funktion  |0 (DE-588)4657256-9  |D s 
689 0 3 |a Bayes-Entscheidungstheorie  |0 (DE-588)4144220-9  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Davison, A. C.  |e Sonstige  |4 oth 
700 1 |a Reid, N.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-84703-2 
856 4 0 |u https://doi.org/10.1017/CBO9780511611131  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029349614 
966 e |u https://doi.org/10.1017/CBO9780511611131  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511611131  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298693584519168
any_adam_object
author Brazzale, A. R.
author_facet Brazzale, A. R.
author_role aut
author_sort Brazzale, A. R.
author_variant a r b ar arb
building Verbundindex
bvnumber BV043940644
classification_rvk QH 231
SK 830
collection ZDB-20-CBO
ctrlnum (ZDB-20-CBO)CR9780511611131
(OCoLC)667889545
(DE-599)BVBBV043940644
dewey-full 519.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.6
dewey-search 519.6
dewey-sort 3519.6
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
doi_str_mv 10.1017/CBO9780511611131
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03402nam a2200565zcb4500</leader><controlfield tag="001">BV043940644</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511611131</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61113-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511611131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511611131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)667889545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940644</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 231</subfield><subfield code="0">(DE-625)141546:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brazzale, A. R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied asymptotics</subfield><subfield code="b">case studies in small-sample statistics</subfield><subfield code="c">A.R. Brazzale, A.C. Davison, N. Reid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 236 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">23</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical hypothesis testing / Asymptotic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Hypothese</subfield><subfield code="0">(DE-588)4182959-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Likelihood-Funktion</subfield><subfield code="0">(DE-588)4657256-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Hypothese</subfield><subfield code="0">(DE-588)4182959-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Likelihood-Funktion</subfield><subfield code="0">(DE-588)4657256-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davison, A. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reid, N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-84703-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349614</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043940644
illustrated Not Illustrated
indexdate 2024-12-24T05:33:57Z
institution BVB
isbn 9780511611131
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029349614
oclc_num 667889545
open_access_boolean
owner DE-12
DE-92
owner_facet DE-12
DE-92
physical 1 online resource (viii, 236 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Cambridge University Press
record_format marc
series2 Cambridge series on statistical and probabilistic mathematics
spelling Brazzale, A. R. Verfasser aut
Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid
Cambridge Cambridge University Press 2007
1 online resource (viii, 236 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Cambridge series on statistical and probabilistic mathematics 23
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods
Statistical hypothesis testing / Asymptotic theory
Statistische Hypothese (DE-588)4182959-1 gnd rswk-swf
Likelihood-Funktion (DE-588)4657256-9 gnd rswk-swf
Asymptotische Statistik (DE-588)4203167-9 gnd rswk-swf
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf
Asymptotische Statistik (DE-588)4203167-9 s
Statistische Hypothese (DE-588)4182959-1 s
Likelihood-Funktion (DE-588)4657256-9 s
Bayes-Entscheidungstheorie (DE-588)4144220-9 s
1\p DE-604
Davison, A. C. Sonstige oth
Reid, N. Sonstige oth
Erscheint auch als Druckausgabe 978-0-521-84703-2
https://doi.org/10.1017/CBO9780511611131 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Brazzale, A. R.
Applied asymptotics case studies in small-sample statistics
Statistical hypothesis testing / Asymptotic theory
Statistische Hypothese (DE-588)4182959-1 gnd
Likelihood-Funktion (DE-588)4657256-9 gnd
Asymptotische Statistik (DE-588)4203167-9 gnd
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
subject_GND (DE-588)4182959-1
(DE-588)4657256-9
(DE-588)4203167-9
(DE-588)4144220-9
title Applied asymptotics case studies in small-sample statistics
title_auth Applied asymptotics case studies in small-sample statistics
title_exact_search Applied asymptotics case studies in small-sample statistics
title_full Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid
title_fullStr Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid
title_full_unstemmed Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid
title_short Applied asymptotics
title_sort applied asymptotics case studies in small sample statistics
title_sub case studies in small-sample statistics
topic Statistical hypothesis testing / Asymptotic theory
Statistische Hypothese (DE-588)4182959-1 gnd
Likelihood-Funktion (DE-588)4657256-9 gnd
Asymptotische Statistik (DE-588)4203167-9 gnd
Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd
topic_facet Statistical hypothesis testing / Asymptotic theory
Statistische Hypothese
Likelihood-Funktion
Asymptotische Statistik
Bayes-Entscheidungstheorie
url https://doi.org/10.1017/CBO9780511611131
work_keys_str_mv AT brazzalear appliedasymptoticscasestudiesinsmallsamplestatistics
AT davisonac appliedasymptoticscasestudiesinsmallsamplestatistics
AT reidn appliedasymptoticscasestudiesinsmallsamplestatistics