Applied asymptotics case studies in small-sample statistics
In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical wor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge series on statistical and probabilistic mathematics
23 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940644 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 xx o|||| 00||| eng d | ||
020 | |a 9780511611131 |c Online |9 978-0-511-61113-1 | ||
024 | 7 | |a 10.1017/CBO9780511611131 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511611131 | ||
035 | |a (OCoLC)667889545 | ||
035 | |a (DE-599)BVBBV043940644 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.6 |2 22 | |
084 | |a QH 231 |0 (DE-625)141546: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Brazzale, A. R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applied asymptotics |b case studies in small-sample statistics |c A.R. Brazzale, A.C. Davison, N. Reid |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (viii, 236 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge series on statistical and probabilistic mathematics |v 23 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods | ||
650 | 4 | |a Statistical hypothesis testing / Asymptotic theory | |
650 | 0 | 7 | |a Statistische Hypothese |0 (DE-588)4182959-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Likelihood-Funktion |0 (DE-588)4657256-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Asymptotische Statistik |0 (DE-588)4203167-9 |D s |
689 | 0 | 1 | |a Statistische Hypothese |0 (DE-588)4182959-1 |D s |
689 | 0 | 2 | |a Likelihood-Funktion |0 (DE-588)4657256-9 |D s |
689 | 0 | 3 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Davison, A. C. |e Sonstige |4 oth | |
700 | 1 | |a Reid, N. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-84703-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511611131 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029349614 | |
966 | e | |u https://doi.org/10.1017/CBO9780511611131 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511611131 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819298693584519168 |
---|---|
any_adam_object | |
author | Brazzale, A. R. |
author_facet | Brazzale, A. R. |
author_role | aut |
author_sort | Brazzale, A. R. |
author_variant | a r b ar arb |
building | Verbundindex |
bvnumber | BV043940644 |
classification_rvk | QH 231 SK 830 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511611131 (OCoLC)667889545 (DE-599)BVBBV043940644 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511611131 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03402nam a2200565zcb4500</leader><controlfield tag="001">BV043940644</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511611131</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61113-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511611131</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511611131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)667889545</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940644</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 231</subfield><subfield code="0">(DE-625)141546:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brazzale, A. R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied asymptotics</subfield><subfield code="b">case studies in small-sample statistics</subfield><subfield code="c">A.R. Brazzale, A.C. Davison, N. Reid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 236 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge series on statistical and probabilistic mathematics</subfield><subfield code="v">23</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical hypothesis testing / Asymptotic theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Hypothese</subfield><subfield code="0">(DE-588)4182959-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Likelihood-Funktion</subfield><subfield code="0">(DE-588)4657256-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Asymptotische Statistik</subfield><subfield code="0">(DE-588)4203167-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Hypothese</subfield><subfield code="0">(DE-588)4182959-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Likelihood-Funktion</subfield><subfield code="0">(DE-588)4657256-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davison, A. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reid, N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-84703-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349614</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511611131</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940644 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T05:33:57Z |
institution | BVB |
isbn | 9780511611131 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349614 |
oclc_num | 667889545 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 236 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge series on statistical and probabilistic mathematics |
spelling | Brazzale, A. R. Verfasser aut Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid Cambridge Cambridge University Press 2007 1 online resource (viii, 236 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge series on statistical and probabilistic mathematics 23 Title from publisher's bibliographic system (viewed on 05 Oct 2015) In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods Statistical hypothesis testing / Asymptotic theory Statistische Hypothese (DE-588)4182959-1 gnd rswk-swf Likelihood-Funktion (DE-588)4657256-9 gnd rswk-swf Asymptotische Statistik (DE-588)4203167-9 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Asymptotische Statistik (DE-588)4203167-9 s Statistische Hypothese (DE-588)4182959-1 s Likelihood-Funktion (DE-588)4657256-9 s Bayes-Entscheidungstheorie (DE-588)4144220-9 s 1\p DE-604 Davison, A. C. Sonstige oth Reid, N. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-84703-2 https://doi.org/10.1017/CBO9780511611131 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brazzale, A. R. Applied asymptotics case studies in small-sample statistics Statistical hypothesis testing / Asymptotic theory Statistische Hypothese (DE-588)4182959-1 gnd Likelihood-Funktion (DE-588)4657256-9 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
subject_GND | (DE-588)4182959-1 (DE-588)4657256-9 (DE-588)4203167-9 (DE-588)4144220-9 |
title | Applied asymptotics case studies in small-sample statistics |
title_auth | Applied asymptotics case studies in small-sample statistics |
title_exact_search | Applied asymptotics case studies in small-sample statistics |
title_full | Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid |
title_fullStr | Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid |
title_full_unstemmed | Applied asymptotics case studies in small-sample statistics A.R. Brazzale, A.C. Davison, N. Reid |
title_short | Applied asymptotics |
title_sort | applied asymptotics case studies in small sample statistics |
title_sub | case studies in small-sample statistics |
topic | Statistical hypothesis testing / Asymptotic theory Statistische Hypothese (DE-588)4182959-1 gnd Likelihood-Funktion (DE-588)4657256-9 gnd Asymptotische Statistik (DE-588)4203167-9 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
topic_facet | Statistical hypothesis testing / Asymptotic theory Statistische Hypothese Likelihood-Funktion Asymptotische Statistik Bayes-Entscheidungstheorie |
url | https://doi.org/10.1017/CBO9780511611131 |
work_keys_str_mv | AT brazzalear appliedasymptoticscasestudiesinsmallsamplestatistics AT davisonac appliedasymptoticscasestudiesinsmallsamplestatistics AT reidn appliedasymptoticscasestudiesinsmallsamplestatistics |