Multiplicative number theory I classical theory

Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Montgomery, Hugh L. 1944- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2007
Schriftenreihe:Cambridge studies in advanced mathematics 97
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-355
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Dirichlet series I
  • The elementary theory of arithmetic functions
  • Principles and first examples of sieve methods
  • Primes in arithmetic progressions I
  • Dirichlet series II
  • The prime number theorem
  • Applications of the prime number theorem
  • Further discussion of the prime number theorem
  • Primitive characters and Gauss sums
  • Analytic properties of the zeta function and L-functions
  • Primes in arithmetic progressions II
  • Explicit formulae
  • Conditional estimates
  • Zeros
  • Oscillations of error terms
  • Appendices. A. The Riemann-Stieltjes integral; B. Bernoulli numbers and the Euler-MacLaurin summation formula; C. The gamma function; D. Topics in harmonic analysis