Additive combinatorics

Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tao, Terence 1975- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2006
Schriftenreihe:Cambridge studies in advanced mathematics 105
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-355
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043940571
003 DE-604
005 20210316
007 cr|uuu---uuuuu
008 161206s2006 xx o|||| 00||| eng d
020 |a 9780511755149  |c Online  |9 978-0-511-75514-9 
024 7 |a 10.1017/CBO9780511755149  |2 doi 
035 |a (ZDB-20-CBO)CR9780511755149 
035 |a (OCoLC)992887676 
035 |a (DE-599)BVBBV043940571 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-92  |a DE-355  |a DE-83 
082 0 |a 511/.6  |2 22 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
100 1 |a Tao, Terence  |d 1975-  |e Verfasser  |0 (DE-588)132190370  |4 aut 
245 1 0 |a Additive combinatorics  |c Terence Tao and Van H. Vu 
264 1 |a Cambridge  |b Cambridge University Press  |c 2006 
300 |a 1 Online-Ressource (xviii, 512 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Cambridge studies in advanced mathematics  |v 105 
505 8 |a The probabilistic method -- Sum set estimates -- Additive geometry -- Fourier analytic methods -- Inverse sumset theorems -- Graph theoretic methods -- The Littlewood-Offord problem -- Incidence geometry -- Algebraic methods -- Szemeredi's theorem for k = 3 -- Szemeredi's theorem for k> 3 -- Long arithmetic progressions in sumsets 
520 |a Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results 
650 4 |a Additive combinatorics 
650 0 7 |a Graphentheorie  |0 (DE-588)4113782-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 1 |a Graphentheorie  |0 (DE-588)4113782-6  |D s 
689 0 |5 DE-604 
700 1 |a Vu, Van H.  |d 1970-  |e Sonstige  |0 (DE-588)14082247X  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-521-85386-6 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-521-13656-3 
830 0 |a Cambridge studies in advanced mathematics  |v 105  |w (DE-604)BV044781283  |9 105 
856 4 0 |u https://doi.org/10.1017/CBO9780511755149  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029349541 
966 e |u https://doi.org/10.1017/CBO9780511755149  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511755149  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511755149  |l DE-355  |p ZDB-20-CBO  |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018)  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-UBR_katkey 6110786
_version_ 1822665511122501632
any_adam_object
author Tao, Terence 1975-
author_GND (DE-588)132190370
(DE-588)14082247X
author_facet Tao, Terence 1975-
author_role aut
author_sort Tao, Terence 1975-
author_variant t t tt
building Verbundindex
bvnumber BV043940571
classification_rvk SK 890
SK 170
SK 840
collection ZDB-20-CBO
contents The probabilistic method -- Sum set estimates -- Additive geometry -- Fourier analytic methods -- Inverse sumset theorems -- Graph theoretic methods -- The Littlewood-Offord problem -- Incidence geometry -- Algebraic methods -- Szemeredi's theorem for k = 3 -- Szemeredi's theorem for k> 3 -- Long arithmetic progressions in sumsets
ctrlnum (ZDB-20-CBO)CR9780511755149
(OCoLC)992887676
(DE-599)BVBBV043940571
dewey-full 511/.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.6
dewey-search 511/.6
dewey-sort 3511 16
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1017/CBO9780511755149
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03545nam a2200541zcb4500</leader><controlfield tag="001">BV043940571</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755149</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-75514-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511755149</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511755149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992887676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940571</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Terence</subfield><subfield code="d">1975-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132190370</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Additive combinatorics</subfield><subfield code="c">Terence Tao and Van H. Vu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 512 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">105</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The probabilistic method -- Sum set estimates -- Additive geometry -- Fourier analytic methods -- Inverse sumset theorems -- Graph theoretic methods -- The Littlewood-Offord problem -- Incidence geometry -- Algebraic methods -- Szemeredi's theorem for k = 3 -- Szemeredi's theorem for k&gt; 3 -- Long arithmetic progressions in sumsets</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive combinatorics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vu, Van H.</subfield><subfield code="d">1970-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)14082247X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-85386-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-13656-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">105</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511755149</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349541</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755149</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755149</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511755149</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043940571
illustrated Not Illustrated
indexdate 2024-12-24T05:33:57Z
institution BVB
isbn 9780511755149
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029349541
oclc_num 992887676
open_access_boolean
owner DE-12
DE-92
DE-355
DE-BY-UBR
DE-83
owner_facet DE-12
DE-92
DE-355
DE-BY-UBR
DE-83
physical 1 Online-Ressource (xviii, 512 Seiten)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018)
publishDate 2006
publishDateSearch 2006
publishDateSort 2006
publisher Cambridge University Press
record_format marc
series Cambridge studies in advanced mathematics
series2 Cambridge studies in advanced mathematics
spellingShingle Tao, Terence 1975-
Additive combinatorics
Cambridge studies in advanced mathematics
The probabilistic method -- Sum set estimates -- Additive geometry -- Fourier analytic methods -- Inverse sumset theorems -- Graph theoretic methods -- The Littlewood-Offord problem -- Incidence geometry -- Algebraic methods -- Szemeredi's theorem for k = 3 -- Szemeredi's theorem for k> 3 -- Long arithmetic progressions in sumsets
Additive combinatorics
Graphentheorie (DE-588)4113782-6 gnd
Kombinatorik (DE-588)4031824-2 gnd
subject_GND (DE-588)4113782-6
(DE-588)4031824-2
title Additive combinatorics
title_auth Additive combinatorics
title_exact_search Additive combinatorics
title_full Additive combinatorics Terence Tao and Van H. Vu
title_fullStr Additive combinatorics Terence Tao and Van H. Vu
title_full_unstemmed Additive combinatorics Terence Tao and Van H. Vu
title_short Additive combinatorics
title_sort additive combinatorics
topic Additive combinatorics
Graphentheorie (DE-588)4113782-6 gnd
Kombinatorik (DE-588)4031824-2 gnd
topic_facet Additive combinatorics
Graphentheorie
Kombinatorik
url https://doi.org/10.1017/CBO9780511755149
volume_link (DE-604)BV044781283
work_keys_str_mv AT taoterence additivecombinatorics
AT vuvanh additivecombinatorics