Mathematical thought and its objects
Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a vers...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-473 URL des Erstveröffentlichers |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043928917 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s2008 xx o|||| 00||| eng d | ||
020 | |a 9780511498534 |c Online |9 978-0-511-49853-4 | ||
024 | 7 | |a 10.1017/CBO9780511498534 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511498534 | ||
035 | |a (OCoLC)967420870 | ||
035 | |a (DE-599)BVBBV043928917 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 |a DE-92 | ||
082 | 0 | |a 510.1 |2 22 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a QB 100 |0 (DE-625)141210: |2 rvk | ||
100 | 1 | |a Parsons, Charles |d 1933- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical thought and its objects |c Charles Parsons |
246 | 1 | 3 | |a Mathematical Thought & its Objects |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xx, 378 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason | |
520 | |a Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Philosophie | |
650 | 4 | |a Mathematics / Philosophy | |
650 | 4 | |a Object (Philosophy) | |
650 | 4 | |a Logic | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logik |0 (DE-588)4036202-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Logik |0 (DE-588)4036202-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-11911-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-45279-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511498534 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029337995 | |
966 | e | |u https://doi.org/10.1017/CBO9780511498534 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511498534 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511498534 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1819298672693739522 |
---|---|
any_adam_object | |
author | Parsons, Charles 1933- |
author_facet | Parsons, Charles 1933- |
author_role | aut |
author_sort | Parsons, Charles 1933- |
author_variant | c p cp |
building | Verbundindex |
bvnumber | BV043928917 |
classification_rvk | CC 2600 QB 100 |
collection | ZDB-20-CBO |
contents | Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason |
ctrlnum | (ZDB-20-CBO)CR9780511498534 (OCoLC)967420870 (DE-599)BVBBV043928917 |
dewey-full | 510.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.1 |
dewey-search | 510.1 |
dewey-sort | 3510.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511498534 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03140nam a2200577zc 4500</leader><controlfield tag="001">BV043928917</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2008 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511498534</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-49853-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511498534</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511498534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967420870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043928917</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QB 100</subfield><subfield code="0">(DE-625)141210:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parsons, Charles</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical thought and its objects</subfield><subfield code="c">Charles Parsons</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Mathematical Thought & its Objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 378 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object (Philosophy)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11911-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-45279-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029337995</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043928917 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T05:33:33Z |
institution | BVB |
isbn | 9780511498534 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029337995 |
oclc_num | 967420870 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG DE-92 |
owner_facet | DE-12 DE-473 DE-BY-UBG DE-92 |
physical | 1 online resource (xx, 378 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Parsons, Charles 1933- Verfasser aut Mathematical thought and its objects Charles Parsons Mathematical Thought & its Objects Cambridge Cambridge University Press 2008 1 online resource (xx, 378 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite Mathematik Philosophie Mathematics / Philosophy Object (Philosophy) Logic Mathematik (DE-588)4037944-9 gnd rswk-swf Logik (DE-588)4036202-4 gnd rswk-swf Mathematik (DE-588)4037944-9 s Logik (DE-588)4036202-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-11911-5 Erscheint auch als Druckausgabe 978-0-521-45279-3 https://doi.org/10.1017/CBO9780511498534 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Parsons, Charles 1933- Mathematical thought and its objects Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason Mathematik Philosophie Mathematics / Philosophy Object (Philosophy) Logic Mathematik (DE-588)4037944-9 gnd Logik (DE-588)4036202-4 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4036202-4 |
title | Mathematical thought and its objects |
title_alt | Mathematical Thought & its Objects |
title_auth | Mathematical thought and its objects |
title_exact_search | Mathematical thought and its objects |
title_full | Mathematical thought and its objects Charles Parsons |
title_fullStr | Mathematical thought and its objects Charles Parsons |
title_full_unstemmed | Mathematical thought and its objects Charles Parsons |
title_short | Mathematical thought and its objects |
title_sort | mathematical thought and its objects |
topic | Mathematik Philosophie Mathematics / Philosophy Object (Philosophy) Logic Mathematik (DE-588)4037944-9 gnd Logik (DE-588)4036202-4 gnd |
topic_facet | Mathematik Philosophie Mathematics / Philosophy Object (Philosophy) Logic Logik |
url | https://doi.org/10.1017/CBO9780511498534 |
work_keys_str_mv | AT parsonscharles mathematicalthoughtanditsobjects AT parsonscharles mathematicalthoughtitsobjects |