Mathematical thought and its objects

Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a vers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Parsons, Charles 1933- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2008
Schlagworte:
Online-Zugang:DE-12
DE-92
DE-473
URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043928917
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 161202s2008 xx o|||| 00||| eng d
020 |a 9780511498534  |c Online  |9 978-0-511-49853-4 
024 7 |a 10.1017/CBO9780511498534  |2 doi 
035 |a (ZDB-20-CBO)CR9780511498534 
035 |a (OCoLC)967420870 
035 |a (DE-599)BVBBV043928917 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-12  |a DE-473  |a DE-92 
082 0 |a 510.1  |2 22 
084 |a CC 2600  |0 (DE-625)17610:  |2 rvk 
084 |a QB 100  |0 (DE-625)141210:  |2 rvk 
100 1 |a Parsons, Charles  |d 1933-  |e Verfasser  |4 aut 
245 1 0 |a Mathematical thought and its objects  |c Charles Parsons 
246 1 3 |a Mathematical Thought & its Objects 
264 1 |a Cambridge  |b Cambridge University Press  |c 2008 
300 |a 1 online resource (xx, 378 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) 
505 8 |a Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason 
520 |a Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite 
650 4 |a Mathematik 
650 4 |a Philosophie 
650 4 |a Mathematics / Philosophy 
650 4 |a Object (Philosophy) 
650 4 |a Logic 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Logik  |0 (DE-588)4036202-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 1 |a Logik  |0 (DE-588)4036202-4  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-11911-5 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-521-45279-3 
856 4 0 |u https://doi.org/10.1017/CBO9780511498534  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-20-CBO 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029337995 
966 e |u https://doi.org/10.1017/CBO9780511498534  |l DE-12  |p ZDB-20-CBO  |q BSB_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511498534  |l DE-92  |p ZDB-20-CBO  |q FHN_PDA_CBO  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1017/CBO9780511498534  |l DE-473  |p ZDB-20-CBO  |q UBG_PDA_CBO  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819298672693739522
any_adam_object
author Parsons, Charles 1933-
author_facet Parsons, Charles 1933-
author_role aut
author_sort Parsons, Charles 1933-
author_variant c p cp
building Verbundindex
bvnumber BV043928917
classification_rvk CC 2600
QB 100
collection ZDB-20-CBO
contents Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason
ctrlnum (ZDB-20-CBO)CR9780511498534
(OCoLC)967420870
(DE-599)BVBBV043928917
dewey-full 510.1
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510.1
dewey-search 510.1
dewey-sort 3510.1
dewey-tens 510 - Mathematics
discipline Mathematik
Philosophie
Wirtschaftswissenschaften
doi_str_mv 10.1017/CBO9780511498534
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03140nam a2200577zc 4500</leader><controlfield tag="001">BV043928917</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s2008 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511498534</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-49853-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511498534</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511498534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967420870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043928917</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QB 100</subfield><subfield code="0">(DE-625)141210:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parsons, Charles</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical thought and its objects</subfield><subfield code="c">Charles Parsons</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Mathematical Thought &amp; its Objects</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 378 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics / Philosophy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object (Philosophy)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Logik</subfield><subfield code="0">(DE-588)4036202-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-11911-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-45279-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029337995</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511498534</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043928917
illustrated Not Illustrated
indexdate 2024-12-24T05:33:33Z
institution BVB
isbn 9780511498534
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029337995
oclc_num 967420870
open_access_boolean
owner DE-12
DE-473
DE-BY-UBG
DE-92
owner_facet DE-12
DE-473
DE-BY-UBG
DE-92
physical 1 online resource (xx, 378 pages)
psigel ZDB-20-CBO
ZDB-20-CBO BSB_PDA_CBO
ZDB-20-CBO FHN_PDA_CBO
ZDB-20-CBO UBG_PDA_CBO
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Cambridge University Press
record_format marc
spelling Parsons, Charles 1933- Verfasser aut
Mathematical thought and its objects Charles Parsons
Mathematical Thought & its Objects
Cambridge Cambridge University Press 2008
1 online resource (xx, 378 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason
Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite
Mathematik
Philosophie
Mathematics / Philosophy
Object (Philosophy)
Logic
Mathematik (DE-588)4037944-9 gnd rswk-swf
Logik (DE-588)4036202-4 gnd rswk-swf
Mathematik (DE-588)4037944-9 s
Logik (DE-588)4036202-4 s
1\p DE-604
Erscheint auch als Druckausgabe 978-0-521-11911-5
Erscheint auch als Druckausgabe 978-0-521-45279-3
https://doi.org/10.1017/CBO9780511498534 Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Parsons, Charles 1933-
Mathematical thought and its objects
Objects and logic -- Structuralism and nominalism -- Modality and structuralism -- A problem about sets -- Intuition -- Numbers as objects -- Intuitive arithmetic and its limits -- Mathematical induction -- Reason
Mathematik
Philosophie
Mathematics / Philosophy
Object (Philosophy)
Logic
Mathematik (DE-588)4037944-9 gnd
Logik (DE-588)4036202-4 gnd
subject_GND (DE-588)4037944-9
(DE-588)4036202-4
title Mathematical thought and its objects
title_alt Mathematical Thought & its Objects
title_auth Mathematical thought and its objects
title_exact_search Mathematical thought and its objects
title_full Mathematical thought and its objects Charles Parsons
title_fullStr Mathematical thought and its objects Charles Parsons
title_full_unstemmed Mathematical thought and its objects Charles Parsons
title_short Mathematical thought and its objects
title_sort mathematical thought and its objects
topic Mathematik
Philosophie
Mathematics / Philosophy
Object (Philosophy)
Logic
Mathematik (DE-588)4037944-9 gnd
Logik (DE-588)4036202-4 gnd
topic_facet Mathematik
Philosophie
Mathematics / Philosophy
Object (Philosophy)
Logic
Logik
url https://doi.org/10.1017/CBO9780511498534
work_keys_str_mv AT parsonscharles mathematicalthoughtanditsobjects
AT parsonscharles mathematicalthoughtitsobjects