Exploratory data analysis with MATLAB

Exploratory Data Analysis with MATLAB presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martinez, Wendy L. 1953- (VerfasserIn), Martinez, Angel R. (VerfasserIn), Solka, Jeffrey L. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton, Fla. CRC Press, Chapman & Hall [2017]
Ausgabe:3.edition
Schriftenreihe:Computer science and data analysis series
A Chapman & Hall book
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV043874339
003 DE-604
005 20221029
007 t
008 161114s2017 xxua||| |||| 00||| eng d
020 |a 9781498776066  |c Hardback  |9 978-1-4987-7606-6 
020 |a 9781032179056  |c Paperback  |9 978-1032179056 
035 |a (OCoLC)989127657 
035 |a (DE-599)BVBBV043874339 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-473  |a DE-29T  |a DE-706  |a DE-739  |a DE-19  |a DE-20  |a DE-188 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a ST 601  |0 (DE-625)143682:  |2 rvk 
100 1 |a Martinez, Wendy L.  |d 1953-  |e Verfasser  |0 (DE-588)1173101632  |4 aut 
245 1 0 |a Exploratory data analysis with MATLAB  |c Wendy L. Martinez ; Angel R. Martinez ; Jeffrey L. Solka 
250 |a 3.edition 
264 1 |a Boca Raton, Fla.  |b CRC Press, Chapman & Hall  |c [2017] 
264 4 |c © 2017 
300 |a XXV, 590 Seiten  |b Illustrationen, graphische Darstellungen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Computer science and data analysis series 
490 0 |a A Chapman & Hall book 
505 8 |a This book describes the various methods used for exploratory data analysis with an emphasis on MATLAB implementation. It covers approaches for visualizing data, data tours and animations, clustering (or unsupervised learning), dimensionality reduction, and more. A set of graphical user interfaces allows users to apply the ideas to their own data. 
520 3 |a Exploratory Data Analysis with MATLAB presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. The revised third edition includes random projections and estimating local intrinsic dimensionality; plots for visualizing data distributions, such as beanplots and violin plots; as well as a chapter on visualizing categorical data. 
630 0 4 |a MATLAB 
650 4 |a Multivariate analysis 
650 4 |a Mathematical statistics 
650 0 7 |a Multivariate Analyse  |0 (DE-588)4040708-1  |2 gnd  |9 rswk-swf 
650 0 7 |a MATLAB  |0 (DE-588)4329066-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Multivariate Analyse  |0 (DE-588)4040708-1  |D s 
689 0 1 |a MATLAB  |0 (DE-588)4329066-8  |D s 
689 0 |5 DE-604 
700 1 |a Martinez, Angel R.  |e Verfasser  |4 aut 
700 1 |a Solka, Jeffrey L.  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029284122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029284122&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-029284122 

Datensatz im Suchindex

DE-473_call_number 61/ST 601m35 GA 12542
DE-473_location 6
DE-BY-UBG_katkey 196108007
DE-BY-UBG_local_notation ST 601m35
DE-BY-UBG_media_number 013907942993
_version_ 1811360783063318528
adam_text Table of Contents Preface to the Third Edition...................................xvii Preface to the Second Edition...................................xix Preface to the First Edition..................................xxiii Part I Introduction to Exploratory Data Analysis Chapter 1 Introduction to Exploratory Data Analysis 1.1 What is Exploratory Data Analysis ............................3 1.2 Overview of the Text .........................................6 1.3 A Few Words about Notation ...................................8 1.4 Data Sets Used in the Book ...................................9 1.4.1 Unstructured Text Documents ...........................9 1.4.2 Gene Expression Data .................................12 1.4.3 Oronsay Data Set .....................................18 1.4.4 Software Inspection...................................19 1.5 Transforming Data............................................20 1.5.1 Power Transformations ................................21 1.5.2 Standardization.......................................22 1.5.3 Sphering the Data ....................................24 1.6 Further Reading .............................................25 Exercises .......................................................27 Part II EDA as Pattern Discovery Chapter 2 Dimensionality Reduction — Linear Methods 2.1 Introduction ................................................31 2.2 Principal Component Analysis — PC A........................ 33 2.2.1 PCA Using the Sample Covariance Matrix ...............34 2.2.2 PCA Using the Sample Correlation Matrix ..............37 2.2.3 How Many Dimensions Should We Keep? ..................38 2.3 Singular Value Decomposition — SVD ..........................42 ix x Exploratory Data Analysis with MATLAB®, Third Edition 2.4 Nonnegative Matrix Factorization ............................47 2.5 Factor Analysis .............................................51 2.6 Fisher s Linear Discriminant ................................56 2.7 Random Projections ........................................ 61 2.8 Intrinsic Dimensionality.....................................65 2.8.1 Nearest Neighbor Approach ............................67 2.8.2 Correlation Dimension ................................71 2.8.3 Maximum Likelihood Approach ..........................72 2.8.4 Estimation Using Packing Numbers ................... 74 2.8.5 Estimation of Local Dimension ........................76 2.9 Summary and Further Reading .................................79 Exercises .......................................................81 Chapter 3 Dimensionality Reduction — Nonlinear Methods 3.1 Multidimensional Scaling — MDS ..............................85 3.1.1 Metric MDS ...........................................87 3.1.2 Nonmetric MDS ........................................97 3.2 Manifold Learning ..........................................105 3.2.1 Locally Linear Embedding............’................105 3.2.2 Isometric Feature Mapping — ISOMAP ..................107 3.2.3 Hessian Eigenmaps ...................................109 3.3 Artificial Neural Network Approaches .......................114 3.3.1 Self-Organizing Maps .......................... 114 3.3.2 Generative Topographic Maps .........................117 3.3.3 Curvilinear Component Analysis ......................122 3.3.4 Autoencoders ........................................127 3.4 Stochastic Neighbor Embedding ..............................131 3.5 Summary and Further Reading ................................135 Exercises .......................................................136 Chapter 4 Data Tours 4.1 Grand Tour .................................................140 4.1.1 Torus Winding Method ................................141 4.1.2 Pseudo Grand Tour ...................................143 4.2 Interpolation Tours ........................................146 4.3 Projection Pursuit..........................................148 4.4 Projection Pursuit Indexes .................................156 4.4.1 Posse Chi-Square Index ..............................156 4.4.2 Moment Index.........................................159 4.5 Independent Component Analysis .............................161 4.6 Summary and Further Reading ................................165 Exercises ..................................................... 166 Table of Contents xi Chapter 5 Finding Clusters 5.1 Introduction .....................................................169 5.2 Hierarchical Methods .............................................171 5.3 Optimization Methods — /c-Means ..................................177 5.4 Spectral Clustering...............................................181 5.5 Document Clustering ..............................................185 5.5.1 Nonnegative Matrix Factorization — Revisited ..............187 5.5.2 Probabilistic Latent Semantic Analysis ....................191 5.6 Minimum Spanning Trees and Clustering.............................196 5.6.1 Definitions ...............................................196 5.6.2 Minimum Spanning Tree Clustering...........................199 5.7 Evaluating the Clusters ..........................................204 5.7.1 Rand Index ................................................205 5.7.2 Cophenetic Correlation ....................................207 5.7.3 Upper Tail Rule............................................208 5.7.4 Silhouette Plot ...........................................211 5.7.5 Gap Statistic..............................................213 5.7.6 Cluster Validity Indices ..................................219 5.8 Summary and Further Reading ......................................230 Exercises ............................................................232 Chapter 6 Model-Based Clustering 6.1 Overview of Model-Based Clustering ........................237 6.2 Finite Mixtures ...........................................240 6.2.1 Multivariate Finite Mixtures .......................242 6.2.2 Component Models — Constraining the Covariances ....243 6.3 Expectation-Maximization Algorithm ........................249 6.4 Hierarchical Agglomerative Model-Based Clustering .........254 6.5 Model-Based Clustering................................... 256 6.6 MBC for Density Estimation and Discriminant Analysis ......263 6.6.1 Introduction to Pattern Recognition ................263 6.6.2 Bayes Decision Theory...............................264 6.6.3 Estimating Probability Densities with MBC ..........267 6.7 Generating Random Variables from a Mixture Model...........271 6.8 Summary and Further Reading ...............................273 Exercises .....................................................276 Chapter 7 Smoothing Scatterplots 7.1 Introduction ...............................................279 7.2 Loess.......................................................280 7.3 Robust Loess ...............................................291 7.4 Residuals and Diagnostics with Loess .......................293 xii Exploratory Data Analysis with MATLAB®, Third Edition 7.4.1 Residual Plots......................................293 7.4.2 Spread Smooth.......................................297 7.4.3 Loess Envelopes — Upper and Lower Smooths...........300 7.5 Smoothing Splines .........................................301 7.5.1 Regression with Splines........................... 302 7.5.2 Smoothing Splines...................................304 7.5.3 Smoothing Splines for Uniformly Spaced Data ........310 7.6 Choosing the Smoothing Parameter ..........................313 7.7 Bivariate Distribution Smooths.............................317 7.7.1 Pairs of Middle Smoothings..........................317 7.7.2 Polar Smoothing ....................................319 7.8 Curve Fitting Toolbox .....................................323 7.9 Summary and Further Reading ...............................325 Exercises .....................................................326 Part III Graphical Methods for EDA Chapter 8 Visualizing Clusters 8.1 Dendrogram.................................................333 8.2 Treemaps ..................................................335 8.3 Rectangle Plots ...................................... ...338 8.4 ReClus Plots ..............................................344 8.5 Data Image ................................................349 8.6 Summary and Further Reading ...............................355 Exercises .....................................................356 Chapter 9 Distribution Shapes 9.1 Histograms ................................................359 9.1.1 Univariate Histograms ..............................359 9.1.2 Bivariate Histograms ...............................366 9.2 Kernel Density ............................................368 9.2.1 Univariate Kernel Density Estimation ............. 369 9.2.2 Multivariate Kernel Density Estimation .............371 9.3 Boxplots ..................................................374 9.3.1 The Basic Boxplot ..................................374 9.3.2 Variations of the Basic Boxplot.....................380 9.3.3 Violin Plots .......................................383 9.3.4 Beeswarm Plot .................................... 385 9.3.5 Beanplot ...........................................388 9.4 Quantile Plots ............................................390 9.4.1 Probability Plots ..................................392 Table of Contents xm 9.4.2 Quantile-Quantile Plot.................................393 9.4.3 Quantile Plot .........................................397 9.5 Bagplots .....................................................399 9.6 Rangefinder Boxplot...........................................400 9.7 Summary and Further Reading ..................................405 Exercises ........................................................405 Chapter 10 Multivariate Visualization 10.1 Glyph Plots..................................................409 10.2 Scatterplots................................................ 410 10.2.1 2-D and 3-D Scatterplots .............................412 10.2.2 Scatterplot Matrices..................................415 10.2.3 Scatterplots with Hexagonal Binning...................416 10.3 Dynamic Graphics .......................................... 418 10.3.1 Identification of Data ...............................420 10.3.2 Linking ..............................................422 10.3.3 Brushing..............................................425 10.4 Coplots......................................................428 10.5 Dot Charts ..................................................431 10.5.1 Basic Dot Chart ......................................431 10.5.2 Multiway Dot Chart ...................................432 10.6 Plotting Points as Curves ...................................436 10.6.1 Parallel Coordinate Plots.............................437 10.6.2 Andrews Curves.......................................439 10.6.3 Andrews Images.......................................443 10.6.4 More Plot Matrices ...................................444 10.7 Data Tours Revisited ........................................447 10.7.1 Grand Tour ...........................................448 10.7.2 Permutation Tour .....................................449 10.8 Biplots .....................................................452 10.9 Summary and Further Reading .................................455 Exercises ........................................................457 Chapter 11 Visualizing Categorical Data 11.1 Discrete Distributions ......................................462 11.1.1 Binomial Distribution ................................462 11.1.2 Poisson Distribution..................................464 11.2 Exploring Distribution Shapes ...............................467 11.2.1 Poissonness Plot......................................467 11.2.2 Binomialness Plot ....................................469 11.2.3 Extensions of the Poissonness Plot ...................471 11.2.4 Hanging Rootogram ....................................476 11.3 Contingency Tables ..........................................479 xiv Exploratory Data Analysis with MATLAB®, Third Edition 11.3.1 Background ........................................481 11.3.2 Bar Plots .........................................483 11.3.3 Spine Plots .......................................486 11.3.4 Mosaic Plots.......................................489 11.3.5 Sieve Plots........................................490 11.3.6 Log Odds Plot .....................................493 11.4 Summary and Further Reading ..............................498 Exercises .....................................................500 Appendix A Proximity Measures A.l Definitions................................................503 A. 1.1 Dissimilarities ...................................504 A.1.2 Similarity Measures ................................506 A. 1.3 Similarity Measures for Binary Data ...............506 A. 1.4 Dissimilarities for Probability Density Functions .507 A.2 Transformations ......................................... 508 A. 3 Further Reading ..........................................509 Appendix B Software Resources for EDA B. l MATLAB Programs ..........................................511 B.2 Other Programs for EDA.....................................515 B.3 EDA Toolbox ...............................................516 Appendix C Description of Data Sets.......................................517 Appendix D MATLAB® Basics D.l Desktop Environment .......................................523 D.2 Getting Help and Other Documentation.......................525 D.3 Data Import and Export ....................................526 D.3.1 Data Import and Export in Base MATLAB®..............526 D.3.2 Data Import and Export with the Statistics Toolbox..528 D.4 Data in MATLAB® ...........................................529 D.4.1 Data Objects in Base MATLAB®........................529 D.4.2 Accessing Data Elements ............................532 D.4.3 Object-Oriented Programming.........................535 D.5 Workspace and Syntax ......................................535 D.5.1 File and Workspace Management ......................536 D.5.2 Syntax in MATLAB® ..................................537 D.5.3 Functions in MATLAB®................................539 D.6 Basic Plot Functions .................................... 540 Table of Contents xv D.6.1 Plotting 2D Data ........................................540 D.6.2 Plotting 3D Data ........................................543 D.6.3 Scatterplots ............................................544 D.6.4 Scatterplot Matrix.......................................545 D.6.5 GUIs for Graphics .......................................545 D.7 Summary and Further Reading ....................................547 References .........................................................551 Author Index ......................................................575 Subject Index ......................................................583 Table of Contents Preface to the Third Edition...................................xvii Preface to the Second Edition...................................xix Preface to the First Edition..................................xxiii Part I Introduction to Exploratory Data Analysis Chapter 1 Introduction to Exploratory Data Analysis 1.1 What is Exploratory Data Analysis ............................3 1.2 Overview of the Text .........................................6 1.3 A Few Words about Notation ...................................8 1.4 Data Sets Used in the Book ...................................9 1.4.1 Unstructured Text Documents ...........................9 1.4.2 Gene Expression Data .................................12 1.4.3 Oronsay Data Set .....................................18 1.4.4 Software Inspection...................................19 1.5 Transforming Data............................................20 1.5.1 Power Transformations ................................21 1.5.2 Standardization.......................................22 1.5.3 Sphering the Data ....................................24 1.6 Further Reading .............................................25 Exercises .......................................................27 Part II EDA as Pattern Discovery Chapter 2 Dimensionality Reduction — Linear Methods 2.1 Introduction ................................................31 2.2 Principal Component Analysis — PC A........................ 33 2.2.1 PCA Using the Sample Covariance Matrix ...............34 2.2.2 PCA Using the Sample Correlation Matrix ..............37 2.2.3 How Many Dimensions Should We Keep? ..................38 2.3 Singular Value Decomposition — SVD ..........................42 ix x Exploratory Data Analysis with MATLAB®, Third Edition 2.4 Nonnegative Matrix Factorization ............................47 2.5 Factor Analysis .............................................51 2.6 Fisher s Linear Discriminant ................................56 2.7 Random Projections ........................................ 61 2.8 Intrinsic Dimensionality.....................................65 2.8.1 Nearest Neighbor Approach ............................67 2.8.2 Correlation Dimension ................................71 2.8.3 Maximum Likelihood Approach ..........................72 2.8.4 Estimation Using Packing Numbers ................... 74 2.8.5 Estimation of Local Dimension ........................76 2.9 Summary and Further Reading .................................79 Exercises .......................................................81 Chapter 3 Dimensionality Reduction — Nonlinear Methods 3.1 Multidimensional Scaling — MDS ..............................85 3.1.1 Metric MDS ...........................................87 3.1.2 Nonmetric MDS ........................................97 3.2 Manifold Learning ..........................................105 3.2.1 Locally Linear Embedding............’................105 3.2.2 Isometric Feature Mapping — ISOMAP ..................107 3.2.3 Hessian Eigenmaps ...................................109 3.3 Artificial Neural Network Approaches .......................114 3.3.1 Self-Organizing Maps .......................... 114 3.3.2 Generative Topographic Maps .........................117 3.3.3 Curvilinear Component Analysis ......................122 3.3.4 Autoencoders ........................................127 3.4 Stochastic Neighbor Embedding ..............................131 3.5 Summary and Further Reading ................................135 Exercises .......................................................136 Chapter 4 Data Tours 4.1 Grand Tour .................................................140 4.1.1 Torus Winding Method ................................141 4.1.2 Pseudo Grand Tour ...................................143 4.2 Interpolation Tours ........................................146 4.3 Projection Pursuit..........................................148 4.4 Projection Pursuit Indexes .................................156 4.4.1 Posse Chi-Square Index ..............................156 4.4.2 Moment Index.........................................159 4.5 Independent Component Analysis .............................161 4.6 Summary and Further Reading ................................165 Exercises ..................................................... 166 Table of Contents xi Chapter 5 Finding Clusters 5.1 Introduction .....................................................169 5.2 Hierarchical Methods .............................................171 5.3 Optimization Methods — /c-Means ..................................177 5.4 Spectral Clustering...............................................181 5.5 Document Clustering ..............................................185 5.5.1 Nonnegative Matrix Factorization — Revisited ..............187 5.5.2 Probabilistic Latent Semantic Analysis ....................191 5.6 Minimum Spanning Trees and Clustering.............................196 5.6.1 Definitions ...............................................196 5.6.2 Minimum Spanning Tree Clustering...........................199 5.7 Evaluating the Clusters ..........................................204 5.7.1 Rand Index ................................................205 5.7.2 Cophenetic Correlation ....................................207 5.7.3 Upper Tail Rule............................................208 5.7.4 Silhouette Plot ...........................................211 5.7.5 Gap Statistic..............................................213 5.7.6 Cluster Validity Indices ..................................219 5.8 Summary and Further Reading ......................................230 Exercises ............................................................232 Chapter 6 Model-Based Clustering 6.1 Overview of Model-Based Clustering ........................237 6.2 Finite Mixtures ...........................................240 6.2.1 Multivariate Finite Mixtures .......................242 6.2.2 Component Models — Constraining the Covariances ....243 6.3 Expectation-Maximization Algorithm ........................249 6.4 Hierarchical Agglomerative Model-Based Clustering .........254 6.5 Model-Based Clustering................................... 256 6.6 MBC for Density Estimation and Discriminant Analysis ......263 6.6.1 Introduction to Pattern Recognition ................263 6.6.2 Bayes Decision Theory...............................264 6.6.3 Estimating Probability Densities with MBC ..........267 6.7 Generating Random Variables from a Mixture Model...........271 6.8 Summary and Further Reading ...............................273 Exercises .....................................................276 Chapter 7 Smoothing Scatterplots 7.1 Introduction ...............................................279 7.2 Loess.......................................................280 7.3 Robust Loess ...............................................291 7.4 Residuals and Diagnostics with Loess .......................293 xii Exploratory Data Analysis with MATLAB®, Third Edition 7.4.1 Residual Plots......................................293 7.4.2 Spread Smooth.......................................297 7.4.3 Loess Envelopes — Upper and Lower Smooths...........300 7.5 Smoothing Splines .........................................301 7.5.1 Regression with Splines........................... 302 7.5.2 Smoothing Splines...................................304 7.5.3 Smoothing Splines for Uniformly Spaced Data ........310 7.6 Choosing the Smoothing Parameter ..........................313 7.7 Bivariate Distribution Smooths.............................317 7.7.1 Pairs of Middle Smoothings..........................317 7.7.2 Polar Smoothing ....................................319 7.8 Curve Fitting Toolbox .....................................323 7.9 Summary and Further Reading ...............................325 Exercises .....................................................326 Part III Graphical Methods for EDA Chapter 8 Visualizing Clusters 8.1 Dendrogram.................................................333 8.2 Treemaps ..................................................335 8.3 Rectangle Plots ...................................... ...338 8.4 ReClus Plots ..............................................344 8.5 Data Image ................................................349 8.6 Summary and Further Reading ...............................355 Exercises .....................................................356 Chapter 9 Distribution Shapes 9.1 Histograms ................................................359 9.1.1 Univariate Histograms ..............................359 9.1.2 Bivariate Histograms ...............................366 9.2 Kernel Density ............................................368 9.2.1 Univariate Kernel Density Estimation ............. 369 9.2.2 Multivariate Kernel Density Estimation .............371 9.3 Boxplots ..................................................374 9.3.1 The Basic Boxplot ..................................374 9.3.2 Variations of the Basic Boxplot.....................380 9.3.3 Violin Plots .......................................383 9.3.4 Beeswarm Plot .................................... 385 9.3.5 Beanplot ...........................................388 9.4 Quantile Plots ............................................390 9.4.1 Probability Plots ..................................392 Table of Contents xm 9.4.2 Quantile-Quantile Plot.................................393 9.4.3 Quantile Plot .........................................397 9.5 Bagplots .....................................................399 9.6 Rangefinder Boxplot...........................................400 9.7 Summary and Further Reading ..................................405 Exercises ........................................................405 Chapter 10 Multivariate Visualization 10.1 Glyph Plots..................................................409 10.2 Scatterplots................................................ 410 10.2.1 2-D and 3-D Scatterplots .............................412 10.2.2 Scatterplot Matrices..................................415 10.2.3 Scatterplots with Hexagonal Binning...................416 10.3 Dynamic Graphics .......................................... 418 10.3.1 Identification of Data ...............................420 10.3.2 Linking ..............................................422 10.3.3 Brushing..............................................425 10.4 Coplots......................................................428 10.5 Dot Charts ..................................................431 10.5.1 Basic Dot Chart ......................................431 10.5.2 Multiway Dot Chart ...................................432 10.6 Plotting Points as Curves ...................................436 10.6.1 Parallel Coordinate Plots.............................437 10.6.2 Andrews Curves.......................................439 10.6.3 Andrews Images.......................................443 10.6.4 More Plot Matrices ...................................444 10.7 Data Tours Revisited ........................................447 10.7.1 Grand Tour ...........................................448 10.7.2 Permutation Tour .....................................449 10.8 Biplots .....................................................452 10.9 Summary and Further Reading .................................455 Exercises ........................................................457 Chapter 11 Visualizing Categorical Data 11.1 Discrete Distributions ......................................462 11.1.1 Binomial Distribution ................................462 11.1.2 Poisson Distribution..................................464 11.2 Exploring Distribution Shapes ...............................467 11.2.1 Poissonness Plot......................................467 11.2.2 Binomialness Plot ....................................469 11.2.3 Extensions of the Poissonness Plot ...................471 11.2.4 Hanging Rootogram ....................................476 11.3 Contingency Tables ..........................................479 xiv Exploratory Data Analysis with MATLAB®, Third Edition 11.3.1 Background ........................................481 11.3.2 Bar Plots .........................................483 11.3.3 Spine Plots .......................................486 11.3.4 Mosaic Plots.......................................489 11.3.5 Sieve Plots........................................490 11.3.6 Log Odds Plot .....................................493 11.4 Summary and Further Reading ..............................498 Exercises .....................................................500 Appendix A Proximity Measures A.l Definitions................................................503 A. 1.1 Dissimilarities ...................................504 A.1.2 Similarity Measures ................................506 A. 1.3 Similarity Measures for Binary Data ...............506 A. 1.4 Dissimilarities for Probability Density Functions .507 A.2 Transformations ......................................... 508 A. 3 Further Reading ..........................................509 Appendix B Software Resources for EDA B. l MATLAB Programs ..........................................511 B.2 Other Programs for EDA.....................................515 B.3 EDA Toolbox ...............................................516 Appendix C Description of Data Sets.......................................517 Appendix D MATLAB® Basics D.l Desktop Environment .......................................523 D.2 Getting Help and Other Documentation.......................525 D.3 Data Import and Export ....................................526 D.3.1 Data Import and Export in Base MATLAB®..............526 D.3.2 Data Import and Export with the Statistics Toolbox..528 D.4 Data in MATLAB® ...........................................529 D.4.1 Data Objects in Base MATLAB®........................529 D.4.2 Accessing Data Elements ............................532 D.4.3 Object-Oriented Programming.........................535 D.5 Workspace and Syntax ......................................535 D.5.1 File and Workspace Management ......................536 D.5.2 Syntax in MATLAB® ..................................537 D.5.3 Functions in MATLAB®................................539 D.6 Basic Plot Functions .................................... 540 Table of Contents xv D.6.1 Plotting 2D Data ........................................540 D.6.2 Plotting 3D Data ........................................543 D.6.3 Scatterplots ............................................544 D.6.4 Scatterplot Matrix.......................................545 D.6.5 GUIs for Graphics .......................................545 D.7 Summary and Further Reading ....................................547 References .........................................................551 Author Index ......................................................575 Subject Index ......................................................583
any_adam_object 1
author Martinez, Wendy L. 1953-
Martinez, Angel R.
Solka, Jeffrey L.
author_GND (DE-588)1173101632
author_facet Martinez, Wendy L. 1953-
Martinez, Angel R.
Solka, Jeffrey L.
author_role aut
aut
aut
author_sort Martinez, Wendy L. 1953-
author_variant w l m wl wlm
a r m ar arm
j l s jl jls
building Verbundindex
bvnumber BV043874339
classification_rvk SK 830
ST 601
contents This book describes the various methods used for exploratory data analysis with an emphasis on MATLAB implementation. It covers approaches for visualizing data, data tours and animations, clustering (or unsupervised learning), dimensionality reduction, and more. A set of graphical user interfaces allows users to apply the ideas to their own data.
ctrlnum (OCoLC)989127657
(DE-599)BVBBV043874339
discipline Informatik
Mathematik
edition 3.edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03238nam a2200517 c 4500</leader><controlfield tag="001">BV043874339</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161114s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498776066</subfield><subfield code="c">Hardback</subfield><subfield code="9">978-1-4987-7606-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781032179056</subfield><subfield code="c">Paperback</subfield><subfield code="9">978-1032179056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)989127657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043874339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martinez, Wendy L.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1173101632</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploratory data analysis with MATLAB</subfield><subfield code="c">Wendy L. Martinez ; Angel R. Martinez ; Jeffrey L. Solka</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3.edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla.</subfield><subfield code="b">CRC Press, Chapman &amp; Hall</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 590 Seiten</subfield><subfield code="b">Illustrationen, graphische Darstellungen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computer science and data analysis series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman &amp; Hall book</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book describes the various methods used for exploratory data analysis with an emphasis on MATLAB implementation. It covers approaches for visualizing data, data tours and animations, clustering (or unsupervised learning), dimensionality reduction, and more. A set of graphical user interfaces allows users to apply the ideas to their own data.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Exploratory Data Analysis with MATLAB presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. The revised third edition includes random projections and estimating local intrinsic dimensionality; plots for visualizing data distributions, such as beanplots and violin plots; as well as a chapter on visualizing categorical data.</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MATLAB</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martinez, Angel R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Solka, Jeffrey L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029284122&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029284122&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029284122</subfield></datafield></record></collection>
id DE-604.BV043874339
illustrated Illustrated
index_date 2024-09-20T13:29:36Z
indexdate 2024-09-27T16:41:23Z
institution BVB
isbn 9781498776066
9781032179056
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029284122
oclc_num 989127657
open_access_boolean
owner DE-473
DE-BY-UBG
DE-29T
DE-706
DE-739
DE-19
DE-BY-UBM
DE-20
DE-188
owner_facet DE-473
DE-BY-UBG
DE-29T
DE-706
DE-739
DE-19
DE-BY-UBM
DE-20
DE-188
physical XXV, 590 Seiten Illustrationen, graphische Darstellungen
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher CRC Press, Chapman & Hall
record_format marc
series2 Computer science and data analysis series
A Chapman & Hall book
spellingShingle Martinez, Wendy L. 1953-
Martinez, Angel R.
Solka, Jeffrey L.
Exploratory data analysis with MATLAB
This book describes the various methods used for exploratory data analysis with an emphasis on MATLAB implementation. It covers approaches for visualizing data, data tours and animations, clustering (or unsupervised learning), dimensionality reduction, and more. A set of graphical user interfaces allows users to apply the ideas to their own data.
MATLAB
Multivariate analysis
Mathematical statistics
Multivariate Analyse (DE-588)4040708-1 gnd
MATLAB (DE-588)4329066-8 gnd
subject_GND (DE-588)4040708-1
(DE-588)4329066-8
title Exploratory data analysis with MATLAB
title_auth Exploratory data analysis with MATLAB
title_exact_search Exploratory data analysis with MATLAB
title_full Exploratory data analysis with MATLAB Wendy L. Martinez ; Angel R. Martinez ; Jeffrey L. Solka
title_fullStr Exploratory data analysis with MATLAB Wendy L. Martinez ; Angel R. Martinez ; Jeffrey L. Solka
title_full_unstemmed Exploratory data analysis with MATLAB Wendy L. Martinez ; Angel R. Martinez ; Jeffrey L. Solka
title_short Exploratory data analysis with MATLAB
title_sort exploratory data analysis with matlab
topic MATLAB
Multivariate analysis
Mathematical statistics
Multivariate Analyse (DE-588)4040708-1 gnd
MATLAB (DE-588)4329066-8 gnd
topic_facet MATLAB
Multivariate analysis
Mathematical statistics
Multivariate Analyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029284122&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029284122&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT martinezwendyl exploratorydataanalysiswithmatlab
AT martinezangelr exploratorydataanalysiswithmatlab
AT solkajeffreyl exploratorydataanalysiswithmatlab