Tubular Combustion

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ishizuka, Satoru (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Momentum Press 2013
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043777416
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 160920s2013 xx o|||| 00||| eng d
020 |a 1306124549  |9 1-306-12454-9 
020 |a 9781306124546  |9 978-1-306-12454-6 
020 |a 9781606503058  |9 978-1-60650-305-8 
020 |a 1606503057  |9 1-60650-305-7 
020 |a 1606503030  |9 1-60650-303-0 
020 |a 9781606503034  |9 978-1-60650-303-4 
020 |a 9781606503034  |9 978-1-60650-303-4 
035 |a (ZDB-4-EBA)ocn863034782 
035 |a (OCoLC)863034782 
035 |a (DE-599)BVBBV043777416 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 567 
100 1 |a Ishizuka, Satoru  |e Verfasser  |4 aut 
245 1 0 |a Tubular Combustion 
264 1 |b Momentum Press  |c 2013 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion- 
500 |a 1. Introduction / Satoru Ishizuka -- 1.1 Background of tubular flame studies -- 1.1.1 Aerodynamic straining -- 1.1.2 Flame curvature -- 1.1.3 Rotation -- 1.1.4 Tubular flames -- 1.2 Notable tubular flame characteristics -- 1.2.1 Thermal advantage -- 1.2.2 Aerodynamic advantage -- 1.2.3 Lewis number effects -- 1.3 Tubular flame studies -- 1.3.1 Theoretical studies -- 1.3.2 Computational simulations -- 1.3.3 Experimental studies -- 1.4 Relevant studies -- 1.4.1 Tubular non-premixed, diffusion flame studies -- 1.4.2 Miniature liquid-film combustors -- 1.5 Practical application -- 1.5.1 Prototype tubular flame burners -- 1.5.2 Rapidly mixed tubular flame combustion -- References 
500 |a 2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka -- 2.1 Introduction -- 2.2 Theoretical formulation -- 2.2.1 Model and assumptions -- 2.2.2 Fundamental equations -- 2.3 Similarity solution -- 2.3.1 Introduction -- 2.3.2 Equations to be solved -- 2.4 Simplified model with one-step kinetics and simple transport properties -- 2.4.1 Formulation -- 2.4.2 Nondimensional system -- 2.4.3 Incompressible flow system -- 2.4.4 Flow field -- 2.4.5 Concentration and temperature field -- 2.4.6 Simplification for Le = 1 -- 2.4.7 Results for simplified model -- 2.4.8 Discussions on results for simplified model -- 2.5 Effects of variable density -- 2.5.1 Model and assumptions -- 2.5.2 Comparison with incompressible solutions -- 2.5.3 Effects of injection velocity -- 2.5.4 Effects of lewis number -- 2.5.5 Discussions on the effects of variable density -- 2.6 Asymptotic analysis -- 2.6.1 Model and assumptions -- 2.6.2 Nondimensional system -- 2.6.3 Asymptotic analysis -- 2.6.4 Approximate solutions -- 2.6.5 Response curves -- 2.6.6 Extinction conditions -- 2.6.7 Numerical example -- 2.6.8 Discussions -- 2.6.9 Some concluding remarks -- 2.7 Numerical study with full kinetics and exact transport properties -- 2.7.1 Introduction -- 2.7.2 Model and equations -- 2.7.3 Reaction mechanism and transport properties -- 2.7.4 Results and discussions -- 2.7.5 Concluding remarks -- 2.8 Final conclusions -- References 
500 |a 3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee -- 3.1 Introduction -- 3.2 Literature overview -- 3.3 Mathematical formulation -- 3.3.1 Similarity form -- 3.3.2 Radial injection -- 3.3.3 Tangential injection -- 3.3.4 Practical considerations -- 3.3.5 Computational procedure -- 3.4 Model validation -- 3.4.1 Tubular flame with a radial inlet flow -- 3.4.2 Swirling tubular flame with a single inlet slot -- 3.5 Flame structure and pressure diffusion -- 3.5.1 Premixed propane-air flames -- 3.5.2 Premixed methane-air flames -- 3.5.3 Summary of pressure diffusion -- 3.6 Potential technology applications -- 3.7 Summary and conclusions -- References 
500 |a 4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz -- 4.1 Introduction -- 4.2 Raman scattering technique -- 4.3 Tubular flame burner -- 4.4 Raman scattering measurements in tubular flames -- 4.4.1 Hydrogen-air tubular flames -- 4.4.2 Methane-air tubular flames -- 4.4.3 Propane-air tubular flames -- 4.5 Cellular tubular flames -- 4.5.1 Instabilities in tubular flames -- 4.5.2 Raman scattering measurements in cellular tubular flames -- References 
500 |a 5. Non-premixed tubular flames / Robert W. Pitz -- 5.1 Introduction -- 5.2 Numerical study of the non-premixed tubular flames -- 5.3 Non-premixed opposed-flow tubular burner -- 5.4 Raman scattering measurements in non-premixed tubular flames -- 5.4.1 Hydrogen/air non-premixed tubular flames -- 5.4.2 Hydrocarbon-air non-premixed tubular flames -- 5.5 Cellular instabilities in non-premixed tubular flames -- 5.5.1 Cellular instabilities in diffusion flames -- 5.5.2 Cellular formation and extinction in non-premixed tubular flames -- References 
500 |a 6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin -- 6.1 Introduction -- 6.2 Brief review of some key features of a tubular flame -- 6.3 Review of the key features of a fuel film combustor flame -- 6.4 Examples of tubular flame behaviors in a fuel film combustor -- 6.4.1 Original design -- 6.4.2 Secondary air injection -- 6.4.3 Swirler design and tubular flame -- 6.5 Concluding remarks -- References 
500 |a 7. Small-scale applications / Daisuke Shimokuri -- 7.1. Introduction -- 7.2. Flame quenching in a narrow channel -- 7.2.1 Flame quenching in a nonrotating flow field -- 7.2.2 Advantages using small-scale tubular flame burners -- 7.2.3 Tubular flame in a small-diameter tube -- 7.2.4 Effects of tube size on the tubular flame -- 7.2.5 Critical tube diameter for a rotating flow field -- 7.3 Development of small power sources using a tubular flame -- References 
500 |a 8. Large-scale applications / Satoru Ishizuka -- 8.1 Introduction -- 8.1.1 Classification -- 8.1.2 Flame diameter and length -- 8.1.3 Rapidly mixed tubular flame combustion -- 8.2 Wide flammable range -- 8.2.1 BFG burners -- 8.3 Fuel diversity -- 8.3.1 Gaseous fuels -- 8.3.2 Liquid fuels -- 8.3.3 Solid fuels -- 8.4 Compactness -- 8.4.1 Fuel-processing system for polymer electrolyte fuel cell -- 8.4.2 Hollow fastening bolt -- 8.4.3 Superheated steam generator -- 8.5 Geometry -- 8.5.1 Flame stabilization -- 8.5.2 Heating process -- 8.5.3 Stirling engine -- References -- Index 
500 |a Includes bibliographical references and index 
650 4 |a Combustion 
650 4 |a Tubes / Thermodynamics 
650 7 |a NATURE / Fossils  |2 bisacsh 
650 7 |a Combustion  |2 fast 
650 7 |a Tubes / Thermodynamics  |2 fast 
650 4 |a Tubes  |x Thermodynamics 
650 4 |a Combustion 
650 0 7 |a Verbrennung  |0 (DE-588)4062656-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Verbrennung  |0 (DE-588)4062656-8  |D s 
689 0 |8 1\p  |5 DE-604 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029188476 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=659687  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=659687  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819297581975470080
any_adam_object
author Ishizuka, Satoru
author_facet Ishizuka, Satoru
author_role aut
author_sort Ishizuka, Satoru
author_variant s i si
building Verbundindex
bvnumber BV043777416
collection ZDB-4-EBA
ctrlnum (ZDB-4-EBA)ocn863034782
(OCoLC)863034782
(DE-599)BVBBV043777416
dewey-full 567
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 567 - Fossil cold-blooded vertebrates
dewey-raw 567
dewey-search 567
dewey-sort 3567
dewey-tens 560 - Paleontology
discipline Geologie / Paläontologie
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07923nam a2200625zc 4500</leader><controlfield tag="001">BV043777416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306124549</subfield><subfield code="9">1-306-12454-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306124546</subfield><subfield code="9">978-1-306-12454-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503058</subfield><subfield code="9">978-1-60650-305-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503057</subfield><subfield code="9">1-60650-305-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503030</subfield><subfield code="9">1-60650-303-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503034</subfield><subfield code="9">978-1-60650-303-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503034</subfield><subfield code="9">978-1-60650-303-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn863034782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863034782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043777416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">567</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishizuka, Satoru</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tubular Combustion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Momentum Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion-</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction / Satoru Ishizuka -- 1.1 Background of tubular flame studies -- 1.1.1 Aerodynamic straining -- 1.1.2 Flame curvature -- 1.1.3 Rotation -- 1.1.4 Tubular flames -- 1.2 Notable tubular flame characteristics -- 1.2.1 Thermal advantage -- 1.2.2 Aerodynamic advantage -- 1.2.3 Lewis number effects -- 1.3 Tubular flame studies -- 1.3.1 Theoretical studies -- 1.3.2 Computational simulations -- 1.3.3 Experimental studies -- 1.4 Relevant studies -- 1.4.1 Tubular non-premixed, diffusion flame studies -- 1.4.2 Miniature liquid-film combustors -- 1.5 Practical application -- 1.5.1 Prototype tubular flame burners -- 1.5.2 Rapidly mixed tubular flame combustion -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka -- 2.1 Introduction -- 2.2 Theoretical formulation -- 2.2.1 Model and assumptions -- 2.2.2 Fundamental equations -- 2.3 Similarity solution -- 2.3.1 Introduction -- 2.3.2 Equations to be solved -- 2.4 Simplified model with one-step kinetics and simple transport properties -- 2.4.1 Formulation -- 2.4.2 Nondimensional system -- 2.4.3 Incompressible flow system -- 2.4.4 Flow field -- 2.4.5 Concentration and temperature field -- 2.4.6 Simplification for Le = 1 -- 2.4.7 Results for simplified model -- 2.4.8 Discussions on results for simplified model -- 2.5 Effects of variable density -- 2.5.1 Model and assumptions -- 2.5.2 Comparison with incompressible solutions -- 2.5.3 Effects of injection velocity -- 2.5.4 Effects of lewis number -- 2.5.5 Discussions on the effects of variable density -- 2.6 Asymptotic analysis -- 2.6.1 Model and assumptions -- 2.6.2 Nondimensional system -- 2.6.3 Asymptotic analysis -- 2.6.4 Approximate solutions -- 2.6.5 Response curves -- 2.6.6 Extinction conditions -- 2.6.7 Numerical example -- 2.6.8 Discussions -- 2.6.9 Some concluding remarks -- 2.7 Numerical study with full kinetics and exact transport properties -- 2.7.1 Introduction -- 2.7.2 Model and equations -- 2.7.3 Reaction mechanism and transport properties -- 2.7.4 Results and discussions -- 2.7.5 Concluding remarks -- 2.8 Final conclusions -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee -- 3.1 Introduction -- 3.2 Literature overview -- 3.3 Mathematical formulation -- 3.3.1 Similarity form -- 3.3.2 Radial injection -- 3.3.3 Tangential injection -- 3.3.4 Practical considerations -- 3.3.5 Computational procedure -- 3.4 Model validation -- 3.4.1 Tubular flame with a radial inlet flow -- 3.4.2 Swirling tubular flame with a single inlet slot -- 3.5 Flame structure and pressure diffusion -- 3.5.1 Premixed propane-air flames -- 3.5.2 Premixed methane-air flames -- 3.5.3 Summary of pressure diffusion -- 3.6 Potential technology applications -- 3.7 Summary and conclusions -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz -- 4.1 Introduction -- 4.2 Raman scattering technique -- 4.3 Tubular flame burner -- 4.4 Raman scattering measurements in tubular flames -- 4.4.1 Hydrogen-air tubular flames -- 4.4.2 Methane-air tubular flames -- 4.4.3 Propane-air tubular flames -- 4.5 Cellular tubular flames -- 4.5.1 Instabilities in tubular flames -- 4.5.2 Raman scattering measurements in cellular tubular flames -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. Non-premixed tubular flames / Robert W. Pitz -- 5.1 Introduction -- 5.2 Numerical study of the non-premixed tubular flames -- 5.3 Non-premixed opposed-flow tubular burner -- 5.4 Raman scattering measurements in non-premixed tubular flames -- 5.4.1 Hydrogen/air non-premixed tubular flames -- 5.4.2 Hydrocarbon-air non-premixed tubular flames -- 5.5 Cellular instabilities in non-premixed tubular flames -- 5.5.1 Cellular instabilities in diffusion flames -- 5.5.2 Cellular formation and extinction in non-premixed tubular flames -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin -- 6.1 Introduction -- 6.2 Brief review of some key features of a tubular flame -- 6.3 Review of the key features of a fuel film combustor flame -- 6.4 Examples of tubular flame behaviors in a fuel film combustor -- 6.4.1 Original design -- 6.4.2 Secondary air injection -- 6.4.3 Swirler design and tubular flame -- 6.5 Concluding remarks -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7. Small-scale applications / Daisuke Shimokuri -- 7.1. Introduction -- 7.2. Flame quenching in a narrow channel -- 7.2.1 Flame quenching in a nonrotating flow field -- 7.2.2 Advantages using small-scale tubular flame burners -- 7.2.3 Tubular flame in a small-diameter tube -- 7.2.4 Effects of tube size on the tubular flame -- 7.2.5 Critical tube diameter for a rotating flow field -- 7.3 Development of small power sources using a tubular flame -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8. Large-scale applications / Satoru Ishizuka -- 8.1 Introduction -- 8.1.1 Classification -- 8.1.2 Flame diameter and length -- 8.1.3 Rapidly mixed tubular flame combustion -- 8.2 Wide flammable range -- 8.2.1 BFG burners -- 8.3 Fuel diversity -- 8.3.1 Gaseous fuels -- 8.3.2 Liquid fuels -- 8.3.3 Solid fuels -- 8.4 Compactness -- 8.4.1 Fuel-processing system for polymer electrolyte fuel cell -- 8.4.2 Hollow fastening bolt -- 8.4.3 Superheated steam generator -- 8.5 Geometry -- 8.5.1 Flame stabilization -- 8.5.2 Heating process -- 8.5.3 Stirling engine -- References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tubes / Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Fossils</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combustion</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tubes / Thermodynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tubes</subfield><subfield code="x">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029188476</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;AN=659687</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;AN=659687</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043777416
illustrated Not Illustrated
indexdate 2024-12-24T05:16:17Z
institution BVB
isbn 1306124549
9781306124546
9781606503058
1606503057
1606503030
9781606503034
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029188476
oclc_num 863034782
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Momentum Press
record_format marc
spelling Ishizuka, Satoru Verfasser aut
Tubular Combustion
Momentum Press 2013
txt rdacontent
c rdamedia
cr rdacarrier
Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion-
1. Introduction / Satoru Ishizuka -- 1.1 Background of tubular flame studies -- 1.1.1 Aerodynamic straining -- 1.1.2 Flame curvature -- 1.1.3 Rotation -- 1.1.4 Tubular flames -- 1.2 Notable tubular flame characteristics -- 1.2.1 Thermal advantage -- 1.2.2 Aerodynamic advantage -- 1.2.3 Lewis number effects -- 1.3 Tubular flame studies -- 1.3.1 Theoretical studies -- 1.3.2 Computational simulations -- 1.3.3 Experimental studies -- 1.4 Relevant studies -- 1.4.1 Tubular non-premixed, diffusion flame studies -- 1.4.2 Miniature liquid-film combustors -- 1.5 Practical application -- 1.5.1 Prototype tubular flame burners -- 1.5.2 Rapidly mixed tubular flame combustion -- References
2. Theory of tubular flames / Tadao Takeno and Makihito Nishioka -- 2.1 Introduction -- 2.2 Theoretical formulation -- 2.2.1 Model and assumptions -- 2.2.2 Fundamental equations -- 2.3 Similarity solution -- 2.3.1 Introduction -- 2.3.2 Equations to be solved -- 2.4 Simplified model with one-step kinetics and simple transport properties -- 2.4.1 Formulation -- 2.4.2 Nondimensional system -- 2.4.3 Incompressible flow system -- 2.4.4 Flow field -- 2.4.5 Concentration and temperature field -- 2.4.6 Simplification for Le = 1 -- 2.4.7 Results for simplified model -- 2.4.8 Discussions on results for simplified model -- 2.5 Effects of variable density -- 2.5.1 Model and assumptions -- 2.5.2 Comparison with incompressible solutions -- 2.5.3 Effects of injection velocity -- 2.5.4 Effects of lewis number -- 2.5.5 Discussions on the effects of variable density -- 2.6 Asymptotic analysis -- 2.6.1 Model and assumptions -- 2.6.2 Nondimensional system -- 2.6.3 Asymptotic analysis -- 2.6.4 Approximate solutions -- 2.6.5 Response curves -- 2.6.6 Extinction conditions -- 2.6.7 Numerical example -- 2.6.8 Discussions -- 2.6.9 Some concluding remarks -- 2.7 Numerical study with full kinetics and exact transport properties -- 2.7.1 Introduction -- 2.7.2 Model and equations -- 2.7.3 Reaction mechanism and transport properties -- 2.7.4 Results and discussions -- 2.7.5 Concluding remarks -- 2.8 Final conclusions -- References
3. Mathematical formulation and computational simulation of tubular flames / Yuyin Zhang, Huayang Zhu, Robert J. Kee -- 3.1 Introduction -- 3.2 Literature overview -- 3.3 Mathematical formulation -- 3.3.1 Similarity form -- 3.3.2 Radial injection -- 3.3.3 Tangential injection -- 3.3.4 Practical considerations -- 3.3.5 Computational procedure -- 3.4 Model validation -- 3.4.1 Tubular flame with a radial inlet flow -- 3.4.2 Swirling tubular flame with a single inlet slot -- 3.5 Flame structure and pressure diffusion -- 3.5.1 Premixed propane-air flames -- 3.5.2 Premixed methane-air flames -- 3.5.3 Summary of pressure diffusion -- 3.6 Potential technology applications -- 3.7 Summary and conclusions -- References
4. Raman spectroscopic measurements of tubular flames / Robert W. Pitz -- 4.1 Introduction -- 4.2 Raman scattering technique -- 4.3 Tubular flame burner -- 4.4 Raman scattering measurements in tubular flames -- 4.4.1 Hydrogen-air tubular flames -- 4.4.2 Methane-air tubular flames -- 4.4.3 Propane-air tubular flames -- 4.5 Cellular tubular flames -- 4.5.1 Instabilities in tubular flames -- 4.5.2 Raman scattering measurements in cellular tubular flames -- References
5. Non-premixed tubular flames / Robert W. Pitz -- 5.1 Introduction -- 5.2 Numerical study of the non-premixed tubular flames -- 5.3 Non-premixed opposed-flow tubular burner -- 5.4 Raman scattering measurements in non-premixed tubular flames -- 5.4.1 Hydrogen/air non-premixed tubular flames -- 5.4.2 Hydrocarbon-air non-premixed tubular flames -- 5.5 Cellular instabilities in non-premixed tubular flames -- 5.5.1 Cellular instabilities in diffusion flames -- 5.5.2 Cellular formation and extinction in non-premixed tubular flames -- References
6. Tubular flame characteristics of miniature liquid film combustors / Derek Dunn-Rankin -- 6.1 Introduction -- 6.2 Brief review of some key features of a tubular flame -- 6.3 Review of the key features of a fuel film combustor flame -- 6.4 Examples of tubular flame behaviors in a fuel film combustor -- 6.4.1 Original design -- 6.4.2 Secondary air injection -- 6.4.3 Swirler design and tubular flame -- 6.5 Concluding remarks -- References
7. Small-scale applications / Daisuke Shimokuri -- 7.1. Introduction -- 7.2. Flame quenching in a narrow channel -- 7.2.1 Flame quenching in a nonrotating flow field -- 7.2.2 Advantages using small-scale tubular flame burners -- 7.2.3 Tubular flame in a small-diameter tube -- 7.2.4 Effects of tube size on the tubular flame -- 7.2.5 Critical tube diameter for a rotating flow field -- 7.3 Development of small power sources using a tubular flame -- References
8. Large-scale applications / Satoru Ishizuka -- 8.1 Introduction -- 8.1.1 Classification -- 8.1.2 Flame diameter and length -- 8.1.3 Rapidly mixed tubular flame combustion -- 8.2 Wide flammable range -- 8.2.1 BFG burners -- 8.3 Fuel diversity -- 8.3.1 Gaseous fuels -- 8.3.2 Liquid fuels -- 8.3.3 Solid fuels -- 8.4 Compactness -- 8.4.1 Fuel-processing system for polymer electrolyte fuel cell -- 8.4.2 Hollow fastening bolt -- 8.4.3 Superheated steam generator -- 8.5 Geometry -- 8.5.1 Flame stabilization -- 8.5.2 Heating process -- 8.5.3 Stirling engine -- References -- Index
Includes bibliographical references and index
Combustion
Tubes / Thermodynamics
NATURE / Fossils bisacsh
Combustion fast
Tubes / Thermodynamics fast
Tubes Thermodynamics
Verbrennung (DE-588)4062656-8 gnd rswk-swf
Verbrennung (DE-588)4062656-8 s
1\p DE-604
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Ishizuka, Satoru
Tubular Combustion
Combustion
Tubes / Thermodynamics
NATURE / Fossils bisacsh
Combustion fast
Tubes / Thermodynamics fast
Tubes Thermodynamics
Verbrennung (DE-588)4062656-8 gnd
subject_GND (DE-588)4062656-8
title Tubular Combustion
title_auth Tubular Combustion
title_exact_search Tubular Combustion
title_full Tubular Combustion
title_fullStr Tubular Combustion
title_full_unstemmed Tubular Combustion
title_short Tubular Combustion
title_sort tubular combustion
topic Combustion
Tubes / Thermodynamics
NATURE / Fossils bisacsh
Combustion fast
Tubes / Thermodynamics fast
Tubes Thermodynamics
Verbrennung (DE-588)4062656-8 gnd
topic_facet Combustion
Tubes / Thermodynamics
NATURE / Fossils
Tubes Thermodynamics
Verbrennung
work_keys_str_mv AT ishizukasatoru tubularcombustion