Building Machine Learning Systems with Python

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Richert, Willi (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Birmingham Packt Publishing 2013
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043776882
003 DE-604
005 20191121
007 cr|uuu---uuuuu
008 160920s2013 xx o|||| 00||| eng d
020 |a 9781782161417  |9 978-1-78216-141-7 
020 |a 1782161414  |9 1-78216-141-4 
020 |a 1782161406  |9 1-78216-140-6 
020 |a 9781782161400  |9 978-1-78216-140-0 
020 |a 9781782161400  |9 978-1-78216-140-0 
035 |a (ZDB-4-EBA)ocn854974334 
035 |a (ZDB-4-ITC)ocn854974334 
035 |a (OCoLC)854974334 
035 |a (DE-599)BVBBV043776882 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 006.76 
100 1 |a Richert, Willi  |e Verfasser  |4 aut 
245 1 0 |a Building Machine Learning Systems with Python 
264 1 |a Birmingham  |b Packt Publishing  |c 2013 
300 |a 290 pages 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Machine Learning; Machine learning and Python -- the dream team; What the book will teach you (and what it will not); What to do when you are stuck; Getting started; Introduction to NumPy, SciPy, and Matplotlib; Installing Python; Chewing data efficiently with NumPy and intelligently with SciPy; Learning NumPy; Indexing; Handling non-existing values; Comparing runtime behaviors; Learning SciPy; Our first (tiny) machine learning application 
500 |a Reading in the dataPreprocessing and cleaning the data; Choosing the right model and learning algorithm; Before building our first model; Starting with a simple straight line; Towards some advanced stuff; Stepping back to go forward -- another look at our data; Training and testing; Answering our initial question; Summary; Chapter 2: Learning How to Classify with Real-world Examples; The Iris dataset; The first step is visualization; Building our first classification model; Evaluation -- holding out data and cross-validation; Building more complex classifiers 
500 |a A more complex dataset and a more complex classifierLearning about the Seeds dataset; Features and feature engineering; Nearest neighbor classification; Binary and multiclass classification; Summary; Chapter 3: Clustering -- Finding Related Posts; Measuring the relatedness of posts; How not to do it; How to do it; Preprocessing -- similarity measured as similar number of common words; Converting raw text into a bag-of-words; Counting words; Normalizing the word count vectors; Removing less important words; Stemming; Installing and using NLTK; Extending the vectorizer with NLTK's stemmer 
500 |a Stop words on steroidsOur achievements and goals; Clustering; KMeans; Getting test data to evaluate our ideas on; Clustering posts; Solving our initial challenge; Another look at noise; Tweaking the parameters; Summary; Chapter 4: Topic Modeling; Latent Dirichlet allocation (LDA); Building a topic model; Comparing similarity in topic space; Modeling the whole of Wikipedia; Choosing the number of topics; Summary; Chapter 5: Classification -- Detecting Poor Answers; Sketching our roadmap; Learning to classify classy answers; Tuning the instance; Tuning the classifier; Fetching the data 
500 |a Slimming the data down to chewable chunksPreselection and processing of attributes; Defining what is a good answer; Creating our first classifier; Starting with the k-nearest neighbor (kNN) algorithm; Engineering the features; Training the classifier; Measuring the classifier's performance; Designing more features; Deciding how to improve; Bias-variance and its trade-off; Fixing high bias; Fixing high variance; High bias or low bias; Using logistic regression; A bit of math with a small example; Applying logistic regression to our postclassification problem 
500 |a Looking behind accuracy -- precision and recall 
500 |a This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them. This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro 
650 4 |a Multimedia systems 
650 4 |a Programming languages (Electronic computers) 
650 4 |a Machine learning 
650 4 |a Python (Computer program language) 
650 7 |a COMPUTERS / General  |2 bisacsh 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
650 4 |a Machine learning 
650 4 |a Python (Computer program language) 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 1 |a Python  |g Programmiersprache  |0 (DE-588)4434275-5  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Coelho, Luis Pedro  |e Sonstige  |4 oth 
912 |a ZDB-4-EBA 
912 |a ZDB-4-ITC 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029187942 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=619996  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=619996  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819297580663701504
any_adam_object
author Richert, Willi
author_facet Richert, Willi
author_role aut
author_sort Richert, Willi
author_variant w r wr
building Verbundindex
bvnumber BV043776882
collection ZDB-4-EBA
ZDB-4-ITC
ctrlnum (ZDB-4-EBA)ocn854974334
(ZDB-4-ITC)ocn854974334
(OCoLC)854974334
(DE-599)BVBBV043776882
dewey-full 006.76
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.76
dewey-search 006.76
dewey-sort 16.76
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05869nam a2200661zc 4500</leader><controlfield tag="001">BV043776882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191121 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782161417</subfield><subfield code="9">978-1-78216-141-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782161414</subfield><subfield code="9">1-78216-141-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1782161406</subfield><subfield code="9">1-78216-140-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782161400</subfield><subfield code="9">978-1-78216-140-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781782161400</subfield><subfield code="9">978-1-78216-140-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn854974334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-ITC)ocn854974334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)854974334</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043776882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.76</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richert, Willi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building Machine Learning Systems with Python</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">290 pages</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Machine Learning; Machine learning and Python -- the dream team; What the book will teach you (and what it will not); What to do when you are stuck; Getting started; Introduction to NumPy, SciPy, and Matplotlib; Installing Python; Chewing data efficiently with NumPy and intelligently with SciPy; Learning NumPy; Indexing; Handling non-existing values; Comparing runtime behaviors; Learning SciPy; Our first (tiny) machine learning application</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reading in the dataPreprocessing and cleaning the data; Choosing the right model and learning algorithm; Before building our first model; Starting with a simple straight line; Towards some advanced stuff; Stepping back to go forward -- another look at our data; Training and testing; Answering our initial question; Summary; Chapter 2: Learning How to Classify with Real-world Examples; The Iris dataset; The first step is visualization; Building our first classification model; Evaluation -- holding out data and cross-validation; Building more complex classifiers</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A more complex dataset and a more complex classifierLearning about the Seeds dataset; Features and feature engineering; Nearest neighbor classification; Binary and multiclass classification; Summary; Chapter 3: Clustering -- Finding Related Posts; Measuring the relatedness of posts; How not to do it; How to do it; Preprocessing -- similarity measured as similar number of common words; Converting raw text into a bag-of-words; Counting words; Normalizing the word count vectors; Removing less important words; Stemming; Installing and using NLTK; Extending the vectorizer with NLTK's stemmer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Stop words on steroidsOur achievements and goals; Clustering; KMeans; Getting test data to evaluate our ideas on; Clustering posts; Solving our initial challenge; Another look at noise; Tweaking the parameters; Summary; Chapter 4: Topic Modeling; Latent Dirichlet allocation (LDA); Building a topic model; Comparing similarity in topic space; Modeling the whole of Wikipedia; Choosing the number of topics; Summary; Chapter 5: Classification -- Detecting Poor Answers; Sketching our roadmap; Learning to classify classy answers; Tuning the instance; Tuning the classifier; Fetching the data</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Slimming the data down to chewable chunksPreselection and processing of attributes; Defining what is a good answer; Creating our first classifier; Starting with the k-nearest neighbor (kNN) algorithm; Engineering the features; Training the classifier; Measuring the classifier's performance; Designing more features; Deciding how to improve; Bias-variance and its trade-off; Fixing high bias; Fixing high variance; High bias or low bias; Using logistic regression; A bit of math with a small example; Applying logistic regression to our postclassification problem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Looking behind accuracy -- precision and recall</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them. This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimedia systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming languages (Electronic computers)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Python (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coelho, Luis Pedro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-ITC</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029187942</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;AN=619996</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;AN=619996</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043776882
illustrated Not Illustrated
indexdate 2024-12-24T05:16:16Z
institution BVB
isbn 9781782161417
1782161414
1782161406
9781782161400
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029187942
oclc_num 854974334
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 290 pages
psigel ZDB-4-EBA
ZDB-4-ITC
ZDB-4-EBA FAW_PDA_EBA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Packt Publishing
record_format marc
spelling Richert, Willi Verfasser aut
Building Machine Learning Systems with Python
Birmingham Packt Publishing 2013
290 pages
txt rdacontent
c rdamedia
cr rdacarrier
Cover; Copyright; Credits; About the Authors; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Getting Started with Python Machine Learning; Machine learning and Python -- the dream team; What the book will teach you (and what it will not); What to do when you are stuck; Getting started; Introduction to NumPy, SciPy, and Matplotlib; Installing Python; Chewing data efficiently with NumPy and intelligently with SciPy; Learning NumPy; Indexing; Handling non-existing values; Comparing runtime behaviors; Learning SciPy; Our first (tiny) machine learning application
Reading in the dataPreprocessing and cleaning the data; Choosing the right model and learning algorithm; Before building our first model; Starting with a simple straight line; Towards some advanced stuff; Stepping back to go forward -- another look at our data; Training and testing; Answering our initial question; Summary; Chapter 2: Learning How to Classify with Real-world Examples; The Iris dataset; The first step is visualization; Building our first classification model; Evaluation -- holding out data and cross-validation; Building more complex classifiers
A more complex dataset and a more complex classifierLearning about the Seeds dataset; Features and feature engineering; Nearest neighbor classification; Binary and multiclass classification; Summary; Chapter 3: Clustering -- Finding Related Posts; Measuring the relatedness of posts; How not to do it; How to do it; Preprocessing -- similarity measured as similar number of common words; Converting raw text into a bag-of-words; Counting words; Normalizing the word count vectors; Removing less important words; Stemming; Installing and using NLTK; Extending the vectorizer with NLTK's stemmer
Stop words on steroidsOur achievements and goals; Clustering; KMeans; Getting test data to evaluate our ideas on; Clustering posts; Solving our initial challenge; Another look at noise; Tweaking the parameters; Summary; Chapter 4: Topic Modeling; Latent Dirichlet allocation (LDA); Building a topic model; Comparing similarity in topic space; Modeling the whole of Wikipedia; Choosing the number of topics; Summary; Chapter 5: Classification -- Detecting Poor Answers; Sketching our roadmap; Learning to classify classy answers; Tuning the instance; Tuning the classifier; Fetching the data
Slimming the data down to chewable chunksPreselection and processing of attributes; Defining what is a good answer; Creating our first classifier; Starting with the k-nearest neighbor (kNN) algorithm; Engineering the features; Training the classifier; Measuring the classifier's performance; Designing more features; Deciding how to improve; Bias-variance and its trade-off; Fixing high bias; Fixing high variance; High bias or low bias; Using logistic regression; A bit of math with a small example; Applying logistic regression to our postclassification problem
Looking behind accuracy -- precision and recall
This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them. This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro
Multimedia systems
Programming languages (Electronic computers)
Machine learning
Python (Computer program language)
COMPUTERS / General bisacsh
Machine learning fast
Python (Computer program language) fast
Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf
Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf
Maschinelles Lernen (DE-588)4193754-5 s
Python Programmiersprache (DE-588)4434275-5 s
1\p DE-604
Coelho, Luis Pedro Sonstige oth
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Richert, Willi
Building Machine Learning Systems with Python
Multimedia systems
Programming languages (Electronic computers)
Machine learning
Python (Computer program language)
COMPUTERS / General bisacsh
Machine learning fast
Python (Computer program language) fast
Maschinelles Lernen (DE-588)4193754-5 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
subject_GND (DE-588)4193754-5
(DE-588)4434275-5
title Building Machine Learning Systems with Python
title_auth Building Machine Learning Systems with Python
title_exact_search Building Machine Learning Systems with Python
title_full Building Machine Learning Systems with Python
title_fullStr Building Machine Learning Systems with Python
title_full_unstemmed Building Machine Learning Systems with Python
title_short Building Machine Learning Systems with Python
title_sort building machine learning systems with python
topic Multimedia systems
Programming languages (Electronic computers)
Machine learning
Python (Computer program language)
COMPUTERS / General bisacsh
Machine learning fast
Python (Computer program language) fast
Maschinelles Lernen (DE-588)4193754-5 gnd
Python Programmiersprache (DE-588)4434275-5 gnd
topic_facet Multimedia systems
Programming languages (Electronic computers)
Machine learning
Python (Computer program language)
COMPUTERS / General
Maschinelles Lernen
Python Programmiersprache
work_keys_str_mv AT richertwilli buildingmachinelearningsystemswithpython
AT coelholuispedro buildingmachinelearningsystemswithpython