Strong rigidity of locally symmetric spaces

Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mostow, George D. 1923- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, NJ Princeton University Press 1973
Schriftenreihe:Annals of Mathematics Studies number 78
Schlagworte:
Online-Zugang:URL des Erstveröffentlichers
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000 cb4500
001 BV043712443
003 DE-604
005 20191218
007 cr|uuu---uuuuu
008 160810s1973 |||| o||u| ||||||eng d
020 |a 9781400881833  |9 978-1-4008-8183-3 
024 7 |a 10.1515/9781400881833  |2 doi 
035 |a (ZDB-23-DGG)9781400881833 
035 |a (OCoLC)1165462698 
035 |a (DE-599)BVBBV043712443 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-83 
082 0 |a 516/.36  |2 23 
084 |a SI 830  |0 (DE-625)143195:  |2 rvk 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
100 1 |a Mostow, George D.  |d 1923-  |0 (DE-588)1081049502  |4 aut 
245 1 0 |a Strong rigidity of locally symmetric spaces  |c G. D. Mostow 
264 1 |a Princeton, NJ  |b Princeton University Press  |c 1973 
264 4 |c © 1973 
300 |a 1 online resource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Annals of Mathematics Studies  |v number 78 
500 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) 
520 |a Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof 
546 |a In English 
650 4 |a Lie groups 
650 4 |a Riemannian manifolds 
650 4 |a Rigidity (Geometry) 
650 4 |a Symmetric spaces 
650 0 7 |a Lokal symmetrischer Raum  |0 (DE-588)4168100-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Rigidität  |0 (DE-588)4178149-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Starrheit  |g Mathematik  |0 (DE-588)4326739-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Lokal symmetrischer Raum  |0 (DE-588)4168100-9  |D s 
689 0 1 |a Rigidität  |0 (DE-588)4178149-1  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Lokal symmetrischer Raum  |0 (DE-588)4168100-9  |D s 
689 1 1 |a Starrheit  |g Mathematik  |0 (DE-588)4326739-7  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 0-691-08136-0 
830 0 |a Annals of Mathematics Studies  |v number 78  |w (DE-604)BV040389493  |9 78 
856 4 0 |u https://doi.org/10.1515/9781400881833?locatt=mode:legacy  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
912 |a ZDB-23-DGG  |a ZDB-23-PST 
999 |a oai:aleph.bib-bvb.de:BVB01-029124671 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

_version_ 1804176498472517632
any_adam_object
author Mostow, George D. 1923-
author_GND (DE-588)1081049502
author_facet Mostow, George D. 1923-
author_role aut
author_sort Mostow, George D. 1923-
author_variant g d m gd gdm
building Verbundindex
bvnumber BV043712443
classification_rvk SI 830
SK 350
collection ZDB-23-DGG
ZDB-23-PST
ctrlnum (ZDB-23-DGG)9781400881833
(OCoLC)1165462698
(DE-599)BVBBV043712443
dewey-full 516/.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516/.36
dewey-search 516/.36
dewey-sort 3516 236
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1515/9781400881833
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nmm a2200601 cb4500</leader><controlfield tag="001">BV043712443</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1973 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881833</subfield><subfield code="9">978-1-4008-8183-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881833</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165462698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712443</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mostow, George D.</subfield><subfield code="d">1923-</subfield><subfield code="0">(DE-588)1081049502</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong rigidity of locally symmetric spaces</subfield><subfield code="c">G. D. Mostow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1973</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 78</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rigidity (Geometry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rigidität</subfield><subfield code="0">(DE-588)4178149-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Starrheit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4326739-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rigidität</subfield><subfield code="0">(DE-588)4178149-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Starrheit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4326739-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08136-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 78</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881833?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124671</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV043712443
illustrated Not Illustrated
indexdate 2024-07-10T07:33:08Z
institution BVB
isbn 9781400881833
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029124671
oclc_num 1165462698
open_access_boolean
owner DE-83
owner_facet DE-83
physical 1 online resource
psigel ZDB-23-DGG
ZDB-23-PST
publishDate 1973
publishDateSearch 1973
publishDateSort 1973
publisher Princeton University Press
record_format marc
series Annals of Mathematics Studies
series2 Annals of Mathematics Studies
spelling Mostow, George D. 1923- (DE-588)1081049502 aut
Strong rigidity of locally symmetric spaces G. D. Mostow
Princeton, NJ Princeton University Press 1973
© 1973
1 online resource
txt rdacontent
c rdamedia
cr rdacarrier
Annals of Mathematics Studies number 78
Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)
Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof
In English
Lie groups
Riemannian manifolds
Rigidity (Geometry)
Symmetric spaces
Lokal symmetrischer Raum (DE-588)4168100-9 gnd rswk-swf
Rigidität (DE-588)4178149-1 gnd rswk-swf
Starrheit Mathematik (DE-588)4326739-7 gnd rswk-swf
Lokal symmetrischer Raum (DE-588)4168100-9 s
Rigidität (DE-588)4178149-1 s
1\p DE-604
Starrheit Mathematik (DE-588)4326739-7 s
2\p DE-604
Erscheint auch als Druck-Ausgabe 0-691-08136-0
Annals of Mathematics Studies number 78 (DE-604)BV040389493 78
https://doi.org/10.1515/9781400881833?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Mostow, George D. 1923-
Strong rigidity of locally symmetric spaces
Annals of Mathematics Studies
Lie groups
Riemannian manifolds
Rigidity (Geometry)
Symmetric spaces
Lokal symmetrischer Raum (DE-588)4168100-9 gnd
Rigidität (DE-588)4178149-1 gnd
Starrheit Mathematik (DE-588)4326739-7 gnd
subject_GND (DE-588)4168100-9
(DE-588)4178149-1
(DE-588)4326739-7
title Strong rigidity of locally symmetric spaces
title_auth Strong rigidity of locally symmetric spaces
title_exact_search Strong rigidity of locally symmetric spaces
title_full Strong rigidity of locally symmetric spaces G. D. Mostow
title_fullStr Strong rigidity of locally symmetric spaces G. D. Mostow
title_full_unstemmed Strong rigidity of locally symmetric spaces G. D. Mostow
title_short Strong rigidity of locally symmetric spaces
title_sort strong rigidity of locally symmetric spaces
topic Lie groups
Riemannian manifolds
Rigidity (Geometry)
Symmetric spaces
Lokal symmetrischer Raum (DE-588)4168100-9 gnd
Rigidität (DE-588)4178149-1 gnd
Starrheit Mathematik (DE-588)4326739-7 gnd
topic_facet Lie groups
Riemannian manifolds
Rigidity (Geometry)
Symmetric spaces
Lokal symmetrischer Raum
Rigidität
Starrheit Mathematik
url https://doi.org/10.1515/9781400881833?locatt=mode:legacy
volume_link (DE-604)BV040389493
work_keys_str_mv AT mostowgeorged strongrigidityoflocallysymmetricspaces