Big data and social science a practical guide to methods and tools

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Foster, Ian 1959- (HerausgeberIn), Ghani, Rayid (HerausgeberIn), Jarmin, Ronald S. 1964- (HerausgeberIn), Kreuter, Frauke (HerausgeberIn), Lane, Julia 1956- (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton ; London ; New York CRC Press [2017]
Schriftenreihe:Chapman & Hall/CRC statistics in the social and behavioral sciences series
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV043701007
003 DE-604
005 20191202
007 t|
008 160804s2017 xxua||| |||| 00||| eng d
010 |a 016010317 
020 |a 9781498751407  |9 978-1-4987-5140-7 
035 |a (OCoLC)948657984 
035 |a (DE-599)BVBBV043701007 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-473  |a DE-739  |a DE-355  |a DE-188  |a DE-N2  |a DE-706  |a DE-M347  |a DE-523 
050 0 |a H61.3 
082 0 |a 300.285/6312  |2 23 
084 |a MR 2200  |0 (DE-625)123489:  |2 rvk 
245 1 0 |a Big data and social science  |b a practical guide to methods and tools  |c edited by Ian Foster (University of Chicago, Argonne National Laboratory), Rayid Ghani (University of Chicago), Ron S. Jarmin (U.S. Census Bureau), Frauke Kreuter (University of Maryland, University of Manheim, Institute for Employment Research), Julia Lane (New York University, American Institutes for Research) 
264 1 |a Boca Raton ; London ; New York  |b CRC Press  |c [2017] 
300 |a xxi, 356 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Chapman & Hall/CRC statistics in the social and behavioral sciences series 
500 |a Includes bibliographical references and index 
650 4 |a Datenverarbeitung 
650 4 |a Sozialwissenschaften 
650 4 |a Social sciences  |x Data processing 
650 4 |a Social sciences  |x Statistical methods 
650 4 |a Data mining 
650 4 |a Big data 
650 0 7 |a Sozialwissenschaften  |0 (DE-588)4055916-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Big Data  |0 (DE-588)4802620-7  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Sozialwissenschaften  |0 (DE-588)4055916-6  |D s 
689 0 1 |a Big Data  |0 (DE-588)4802620-7  |D s 
689 0 |5 DE-604 
700 1 |a Foster, Ian  |d 1959-  |0 (DE-588)122888529  |4 edt 
700 1 |a Ghani, Rayid  |4 edt 
700 1 |a Jarmin, Ronald S.  |d 1964-  |0 (DE-588)124661262  |4 edt 
700 1 |a Kreuter, Frauke  |0 (DE-588)1033254037  |4 edt 
700 1 |a Lane, Julia  |d 1956-  |0 (DE-588)129556807  |4 edt 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029113428&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029113428&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029113428 

Datensatz im Suchindex

DE-473_call_number 303/MR 2200 WX 81692a
31/MR 2200 WX 81692
DE-473_location 7
3
DE-BY-UBG_katkey 196080554
DE-BY-UBG_media_number TEMP2167192
013108686829
_version_ 1824053225205006336
adam_text Contents Preface xiii Editors xv Contributors xix 1 Introduction 1 1.1 Why this book?.................................................................. 1 1.2 Defining big data and its value................................................. 3 1.3 Social science, inference, and big data......................................... 4 1.4 Social science, data quality, and big data ..................................... 7 1.5 New tools for new data.......................................................... 9 1.6 The book’s “use case”.......................................................... 10 1.7 The structure of the book...................................................... 13 1.7.1 Part I: Capture and curation........................................ 13 1.7.2 Part II: Modeling and analysis...................................... 15 1.7.3 Part III: Inference and ethics ......................................... 16 1.8 Resources...................................................................... 17 1 Capture and Curation 21 2 Working with Web Data and APIs 23 Cameron Neylon 2.1 Introduction................................................................... 23 2.2 Scraping information from the web.............................................. 24 2.2.1 Obtaining data from the HHMI website.................................... 24 2.2.2 Limits of scraping...................................................... 30 2.3 New data in the research enterprise ........................................... 31 2.4 A functional view.............................................................. 37 2.4.1 Relevant APIs and resources............................................. 38 2.4.2 RESTful APIs, returned data, and Python wrappers....................... 38 2.5 Programming against an API..................................................... 41 Contents Vi!! 2.6 Using the ORCID API via a wrapper........................................... 42 2.7 Quality, scope, and management.............................................. 44 2.8 Integrating data from multiple sources...................................... 46 2.8.1 The Lagotto API ................................................. 46 2.8.2 Working with a corpus............................................ 52 2.9 Working with the graph of relationships..................................... 58 2.9.1 Citation links between articles.................................. 58 2.9.2 Categories, sources, and connections............................. 60 2.9.3 Data availability and completeness................................... 61 2.9.4 The value of sparse dynamic data..................................... 62 2.10 Bringing it together: Tracking pathways to impact .......................... 65 2.10.1 Network analysis approaches.......................................... 66 2.10.2 Future prospects and new data sources................................ 66 2.11 Summary..................................................................... 67 2.12 Resources................................................................... 69 2.13 Acknowledgements and copyright.............................................. 70 3 Record Linkage 71 Joshua Tokle and Stefan Bender 3.1 Motivation ................................................................. 71 3.2 Introduction to record linkage.............................................. 72 3.3 Preprocessing data for record linkage....................................... 76 3.4 Indexing and blocking....................................................... 78 3.5 Matching.................................................................... 80 3.5.1 Rule-based approaches................................................ 82 3.5.2 Probabilistic record linkage......................................... 83 3.5.3 Machine learning approaches to linking............................... 85 3.5.4 Disambiguating networks.............................................. 88 3.6 Classification.............................................................. 88 3.6.1 Thresholds........................................................... 89 3.6.2 One-to-one links..................................................... 90 3.7 Record linkage and data protection.......................................... 91 3.8 Summary..................................................................... 92 3.9 Resources................................................................... 92 4 Databases 93 Ian Foster and Pascal Heus 4.1 Introduction ............................................................... 93 4.2 DBMS: When and why.......................................................... 94 4.3 Relational DBMSs........................................................... 100 4.3.1 Structured Query Language (SQL)..................................... 102 4.3.2 Manipulating and querying data...................................... 102 4.3.3 Schema design and definition........................................ 105 Contents IX 4.3.4 Loading data....................................................... 107 4.3.5 Transactions and crash recovery.................................... 108 4.3.6 Database optimizations............................................. 109 4.3.7 Caveats and challenges............................................. 112 4.4 Linking DBMSs and other tools............................................ 113 4.5 NoSQL databases ......................................................... 116 4.5.1 Challenges of scale: The CAP theorem............................... 116 4.5.2 NoSQL and key-value stores ........................................ 117 4.5.3 Other NoSQL databases.............................................. 119 4.6 Spatial databases ....................................................... 120 4.7 Which database to use?................................................... 122 4.7.1 Relational DBMSs................................................... 122 4.7.2 NoSQL DBMSs........................................................ 123 4.8 Summary.................................................................. 123 4.9 Resources................................................................ 124 5 Programming with Big Data 125 Huy Vo and Claudio Silva 5.1 Introduction ............................................................ 125 5.2 The MapReduce programming model.......................................... 127 5.3 Apache Hadoop MapReduce.................................................. 129 5.3.1 The Hadoop Distributed File System............................ 130 5.3.2 Hadoop: Bringing compute to the data............................... 131 5.3.3 Hardware provisioning.............................................. 134 5.3.4 Programming language support....................................... 136 5.3.5 Fault tolerance.................................................... 137 5.3.6 Limitations of Hadoop.............................................. 137 5.4 Apache Spark............................................................. 138 5.5 Summary.................................................................. 141 5.6 Resources................................................................ 143 II Modeling and Analysis 145 6 Machine Learning 1 ¿7 Rayid Ghani and Mate Schierholz 6.1 Introduction ............................................................... 147 6.2 What is machine learning? .................................................. 148 6.3 The machine learning process................................................ 150 6.4 Problem formulation: Mapping a problem to machine learning methods . ... 151 6.5 Methods..................................................................... 153 6.5.1 Unsupervised learning methods........................................ 153 6.5.2 Supervised learning.................................................. 161 X Contents 6.6 Evaluation.............................................................. 173 6.6.1 Methodology.......................................................... 173 6.6.2 Metrics.............................................................. 176 6.7 Practical tips.......................................................... 180 6.7.1 Features ............................................................ 180 6.7.2 Machine learning pipeline............................................ 181 6.7.3 Multiclass problems.................................................. 181 6.7.4 Skewed or imbalanced classification problems......................... 182 6.8 How can social scientists benefit from machine learning?................ 183 6.9 Advanced topics............................................................ 185 6.10 Summary.................................................................... 185 6.11 Resources.................................................................. 186 7 Text Analysis 187 Evgeny Klochikhin and Jordan Boyd-Graber 7.1 Understanding what people write............................................ 187 7.2 How to analyze text ....................................................... 189 7.2.1 Processing text data................................................. 190 7.2.2 How much is a word worth?............................................ 192 7.3 Approaches and applications................................................ 193 7.3.1 Topic modeling....................................................... 193 7.3.1.1 Inferring topics from raw text ............................ 194 7.3.1.2 Applications of topic models............................... 197 7.3.2 Information retrieval and clustering................................. 198 7.3.3 Other approaches..................................................... 205 7.4 Evaluation................................................................. 208 7.5 Text analysis tools........................................................ 210 7.6 Summary.................................................................... 212 7.7 Resources.................................................................. 213 3 Networks: The Basics 215 Jason Ou’en-Smith 8.1 Introduction .............................................................. 215 8.2 Network data............................................................... 218 8.2.1 Forms of network data................................................ 218 8.2.2 Inducing one-mode networks from two-mode data ....................... 220 8.3 Network measures........................................................... 224 8.3.1 Reachability ........................................................ 224 8.3.2 Whole-network measures............................................... 225 8.4 Comparing collaboration networks........................................... 234 8.5 Summary.................................................................... 238 8.6 Resources.................................................................. 239 Contents III Inference and Ethics 241 9 Information Visualization M. Adil Yalçin and Catherine Plaisant 9.1 Introduction.................... 9.2 Developing effective visualizations 9.3 A data-by-tasks taxonomy .... 9.3.1 Multivariate data........ 9.3.2 Spatial data............. 9.3.3 Temporal data............ 9.3.4 Hierarchical data........ 9.3.5 Network data............. 9.3.6 Text data................ 9.4 Challenges...................... 9.4.1 Scalability ............. 9.4.2 Evaluation............... 9.4.3 Visual impairment .... 9.4.4 Visual literacy.......... 9.5 Summary......................... 9.6 Resources ...................... ¿4 J 243 244 249 249 251 252 255 257 259 259 260 261 261 262 262 263 10 Errors and inference 76c Paul P. Biemer 10.1 Introduction ................................................................. 265 10.2 The total error paradigm...................................................... 266 10.2.1 The traditional model.................................................. 266 10.2.2 Extending the framework to big data................................. 273 10.3 Illustrations of errors in big data........................................... 275 10.4 Errors in big data analytics.................................................. 277 10.4.1 Errors resulting from volume, velocity, and variety, assuming perfect veracity............................................................... 277 10.4.2 Errors resulting from lack of veracity.............................. 279 10.4.2.1 Variable and correlated error............................. 280 10.4.2.2 Models for categorical data............................... 282 10.4.2.3 Misclassification and rare classes........................... 283 10.4.2.4 Correlation analysis......................................... 284 10.4.2.5 Regression analysis.......................................... 288 10.5 Some methods for mitigating, detecting, and compensating for errors........... 290 10.6 Summary....................................................................... 295 10.7 Resources..................................................................... 296 Contents XÎ ! 11 Privacy and Confidentiality 299 Stefan Bender, Ron Jarmin, Frauke Kreuter, and Julia Lane 11.1 Introduction............................................................... 299 11.2 Why is access important?................................................... 303 11.3 Providing access........................................................... 305 11.4 The new challenges ........................................................ 306 11.5 Legal and ethical framework................................................ 308 11.6 Summary.................................................................... 310 11.7 Resources.................................................................. 311 12 Workbooks 313 Jonathan Scott Morgan, Christina Jones, and Ahmad Emad 12.1 Introduction .............................................................. 313 12.2 Environment................................................................ 314 12.2.1 Running workbooks locally........................................... 314 12.2.2 Central workbook server............................................. 315 12.3 Workbook details........................................................... 315 12.3.1 Social Media and APIs............................................... 315 12.3.2 Database basics..................................................... 316 12.3.3 Data Linkage........................................................ 316 12.3.4 Machine Learning.................................................... 317 12.3.5 Text Analysis....................................................... 317 12.3.6 Networks............................................................ 318 12.3.7 Visualization....................................................... 318 12.4 Resources.................................................................. 319 Bibliography 321 Index 349 BIG DATA AND SOCIAL SCIENCE A Practical Guide to Methods and Tools Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and practice. Prominent leaders in the social sciences, statistics, and computer science as well as the emerging field of data science provide a unique perspective on how to apply modern social science research principles and current analytical and computational tools. The text teaches you how to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. Features • Takes an accessible, hands-on approach to handling big data in the social sciences • Presents the key big data tools in a non-intimidating way to both social and data scientists while not neglecting research questions and purposes • Illustrates social science and data science principles through real-world applica- tions • Links computer science concepts to real social science research • Promotes good scientific practice • Provides freely available data and code as well as practical programming exercises through GitHub This classroom-tested book fills a major gap in graduate- and professional-level data and social science education. It can be used to train a new generation of social data scientists to tackle real-world problems and improve the skills and competencies of ap- plied social scientists. It empowers you to use the massive and rapidly growing amounts of available data to interpret economic and social activities in a scientific and rigorous manner.
any_adam_object 1
author2 Foster, Ian 1959-
Ghani, Rayid
Jarmin, Ronald S. 1964-
Kreuter, Frauke
Lane, Julia 1956-
author2_role edt
edt
edt
edt
edt
author2_variant i f if
r g rg
r s j rs rsj
f k fk
j l jl
author_GND (DE-588)122888529
(DE-588)124661262
(DE-588)1033254037
(DE-588)129556807
author_facet Foster, Ian 1959-
Ghani, Rayid
Jarmin, Ronald S. 1964-
Kreuter, Frauke
Lane, Julia 1956-
building Verbundindex
bvnumber BV043701007
callnumber-first H - Social Science
callnumber-label H61
callnumber-raw H61.3
callnumber-search H61.3
callnumber-sort H 261.3
callnumber-subject H - Social Science
classification_rvk MR 2200
ctrlnum (OCoLC)948657984
(DE-599)BVBBV043701007
dewey-full 300.285/6312
dewey-hundreds 300 - Social sciences
dewey-ones 300 - Social sciences
dewey-raw 300.285/6312
dewey-search 300.285/6312
dewey-sort 3300.285 46312
dewey-tens 300 - Social sciences
discipline Soziologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02775nam a2200553 c 4500</leader><controlfield tag="001">BV043701007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191202 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160804s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016010317</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498751407</subfield><subfield code="9">978-1-4987-5140-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)948657984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043701007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H61.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">300.285/6312</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2200</subfield><subfield code="0">(DE-625)123489:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data and social science</subfield><subfield code="b">a practical guide to methods and tools</subfield><subfield code="c">edited by Ian Foster (University of Chicago, Argonne National Laboratory), Rayid Ghani (University of Chicago), Ron S. Jarmin (U.S. Census Bureau), Frauke Kreuter (University of Maryland, University of Manheim, Institute for Employment Research), Julia Lane (New York University, American Institutes for Research)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 356 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman &amp; Hall/CRC statistics in the social and behavioral sciences series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sozialwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social sciences</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sozialwissenschaften</subfield><subfield code="0">(DE-588)4055916-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Foster, Ian</subfield><subfield code="d">1959-</subfield><subfield code="0">(DE-588)122888529</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghani, Rayid</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jarmin, Ronald S.</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)124661262</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kreuter, Frauke</subfield><subfield code="0">(DE-588)1033254037</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lane, Julia</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)129556807</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029113428&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029113428&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029113428</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV043701007
illustrated Illustrated
indexdate 2025-02-14T18:03:32Z
institution BVB
isbn 9781498751407
language English
lccn 016010317
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029113428
oclc_num 948657984
open_access_boolean
owner DE-473
DE-BY-UBG
DE-739
DE-355
DE-BY-UBR
DE-188
DE-N2
DE-706
DE-M347
DE-523
owner_facet DE-473
DE-BY-UBG
DE-739
DE-355
DE-BY-UBR
DE-188
DE-N2
DE-706
DE-M347
DE-523
physical xxi, 356 Seiten Illustrationen, Diagramme
publishDate 2017
publishDateSearch 2017
publishDateSort 2017
publisher CRC Press
record_format marc
series2 Chapman & Hall/CRC statistics in the social and behavioral sciences series
spellingShingle Big data and social science a practical guide to methods and tools
Datenverarbeitung
Sozialwissenschaften
Social sciences Data processing
Social sciences Statistical methods
Data mining
Big data
Sozialwissenschaften (DE-588)4055916-6 gnd
Big Data (DE-588)4802620-7 gnd
subject_GND (DE-588)4055916-6
(DE-588)4802620-7
(DE-588)4143413-4
title Big data and social science a practical guide to methods and tools
title_auth Big data and social science a practical guide to methods and tools
title_exact_search Big data and social science a practical guide to methods and tools
title_full Big data and social science a practical guide to methods and tools edited by Ian Foster (University of Chicago, Argonne National Laboratory), Rayid Ghani (University of Chicago), Ron S. Jarmin (U.S. Census Bureau), Frauke Kreuter (University of Maryland, University of Manheim, Institute for Employment Research), Julia Lane (New York University, American Institutes for Research)
title_fullStr Big data and social science a practical guide to methods and tools edited by Ian Foster (University of Chicago, Argonne National Laboratory), Rayid Ghani (University of Chicago), Ron S. Jarmin (U.S. Census Bureau), Frauke Kreuter (University of Maryland, University of Manheim, Institute for Employment Research), Julia Lane (New York University, American Institutes for Research)
title_full_unstemmed Big data and social science a practical guide to methods and tools edited by Ian Foster (University of Chicago, Argonne National Laboratory), Rayid Ghani (University of Chicago), Ron S. Jarmin (U.S. Census Bureau), Frauke Kreuter (University of Maryland, University of Manheim, Institute for Employment Research), Julia Lane (New York University, American Institutes for Research)
title_short Big data and social science
title_sort big data and social science a practical guide to methods and tools
title_sub a practical guide to methods and tools
topic Datenverarbeitung
Sozialwissenschaften
Social sciences Data processing
Social sciences Statistical methods
Data mining
Big data
Sozialwissenschaften (DE-588)4055916-6 gnd
Big Data (DE-588)4802620-7 gnd
topic_facet Datenverarbeitung
Sozialwissenschaften
Social sciences Data processing
Social sciences Statistical methods
Data mining
Big data
Big Data
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029113428&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029113428&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT fosterian bigdataandsocialscienceapracticalguidetomethodsandtools
AT ghanirayid bigdataandsocialscienceapracticalguidetomethodsandtools
AT jarminronalds bigdataandsocialscienceapracticalguidetomethodsandtools
AT kreuterfrauke bigdataandsocialscienceapracticalguidetomethodsandtools
AT lanejulia bigdataandsocialscienceapracticalguidetomethodsandtools