Tools in fluvial geomorphology
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Chichester, UK ; Hoboken, NJ
Wiley Blackwell
2016
|
Ausgabe: | Second edition |
Schriftenreihe: | Advancing river restoration and management
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043656278 | ||
003 | DE-604 | ||
005 | 20160712 | ||
007 | t| | ||
008 | 160705s2016 xx a||| |||| 00||| eng d | ||
010 | |a 2016006833 | ||
020 | |a 9780470684054 |c cloth |9 978-0-470-68405-4 | ||
035 | |a (OCoLC)942461555 | ||
035 | |a (DE-599)GBV848295765 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-824 | ||
082 | 0 | |a 551.35 | |
082 | 0 | |a 551.3/5 | |
084 | |a RB 10265 |0 (DE-625)142220:12679 |2 rvk | ||
084 | |a RB 10357 |0 (DE-625)142220:12706 |2 rvk | ||
245 | 1 | 0 | |a Tools in fluvial geomorphology |c edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France |
250 | |a Second edition | ||
264 | 1 | |a Chichester, UK ; Hoboken, NJ |b Wiley Blackwell |c 2016 | |
300 | |a xvii, 541 Seiten |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Advancing river restoration and management | |
650 | 0 | 7 | |a Fluss |0 (DE-588)4131972-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geomorphologie |0 (DE-588)4130684-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fluss |0 (DE-588)4131972-2 |D s |
689 | 0 | 1 | |a Geomorphologie |0 (DE-588)4130684-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kondolf, G. Mathias |e Sonstige |0 (DE-588)1011857626 |4 oth | |
700 | 1 | |a Piégay, Hervé |d 1967- |e Sonstige |0 (DE-588)1031721622 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029069758&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029069758 |
Datensatz im Suchindex
_version_ | 1819639014929465344 |
---|---|
adam_text | Titel: Tools in fluvial geomorphology
Autor: Kondolf, G. Mathias
Jahr: 2016
Contents
List of contributors, xi
Series Foreword, xv
Preface to the Second Edition, xvii
Section I: Background
1 Tools in fluvial geomorphology: problem statement
and recent practice, 3
G. Mathias Kondolfand Hervé Piégay
1.1 Introduction, 3
1.2 Tools and fluvial geomorphology: the terms, 4
1.3 What is a tool in fluvial geomorphology?, 4
Roots and tools, 4
From conceptual to working tools, 5
Tools and questions, 7
1.4 Overview and trends of tools used in the field, 9
1.5 Scope and organization of this book, 9
Acknowledgements, 11
References, 11
Section II: The Temporal Framework:
Dating and Assessing
Geomorphological Trends
2 Surficial geological tools in fluvial geomorphology, 15
Robert B. Jacobson, Jim E. O Connor and Takashi Oguchi
2.1 Introduction, 15
2.2 Overview of surficial geological approaches, 15
Sedimentology, 16
Geochronology of alluvium, 19
Stratigraphy, 23
Obtaining surficial geological data, 24
Geological reasoning - putting it together, 25
2.3 Applications of surficial geological approaches to geomorphic
interpretation, 27
Palaeohydrological interpretations from surficial geological data, 27
Catastrophic events: exceptional floods and channel and
valley-bottom morphology on the Deschutes River, Oregon, 29
Land-use effects and river restoration, 31
2.4 Summary and conclusions, 33
References, 34
3 Archaeology and human artefacts, 40
Anthony G. Brown, François Petit and L. Allen James
3.1 Introduction, 40
3.2 General considerations in using archaeological evidence in
geomorphology, 40
3.3 Archaeological tools, 41
Hearths and lithics, 41
Pottery and small artefacts, 41
Structures, 41
Palaeohydrological data from archaeology, 43
Artefacts and fluvial processes, 43
Mining sediment as tracers, 43
3.4 Legacy sediment, 44
Evidence of environmental disturbance and fluvial adjustments, 44
The pristine New World myth, 45
3.5 Using archaeological data: case studies, 45
Case study 1. Fluvial reconstruction from bridge structures on the
River Trent, UK, 46
Case study 2. Slags, bedload and hydraulic sorting in Belgium, 48
Case study 3. Artefactual evidence of floodplain deposition and
erosion in Belgium, 49
Case study 4. Metal mining and fluvial response: in the Old and New
Worlds, 50
3.6 Conclusions, 51
References, 52
4 Using historical data in fluvial geomorphology, 56
Robert C. Grabowski and Angela M. Gurnell
4.1 Introduction, 56
4.2 The documentary record, 57
Early documentary records in Britain, 58
Other examples of the use of documentary sources in fluvial
geomorphology, 59
Problems of data reliability and accuracy, 61
4.3 The cartographic record, 63
Some examples of using maps to study channel change, 63
General issues of accuracy, 64
4.4 The topographic record, 66
Some examples of using topographic records to study channel
change, 67
Errors and uncertainty in the comparison of topographic records, 68
4.5 The modern historical record: remote-sensing, 69
Accuracy and uncertainty, 71
4.6 Conclusion, 71
Acknowledgements, 71
References, 71
Section III: The Spatial Framework:
Emphasizing Spatial Structure and
Nested Character of Fluvial Forms
5 System approaches in fluvial geomorphology, 79
Hervé Piégay
5.1 System, fluvial system, hydrosystem, 79
The system, a widespread concept, 79
The fluvial system, 79
The hydrosystem concept, 80
The fluvial anthroposystem concept, 81
5.2 Components of the fluvial system, 83
Scales of analysis and the range of influencing factors, 83
Non-linear temporal trajectory of fluvial systems, 83
5.3 Fluvial system, a conceptual tool for geomorphologists, 84
Partial versus total system approach, 84
The fluvial system, a concept for structuring hypothesis, 84
The comparative space-time framework, 85
Quantitative versus qualitative analysis, 92
From fluvial system to riverscape, 94
V
vi Contents
5.4 Examples of applications, 95
Bega River, Australia, 95
The Drôme, Roubion and Eygues Rivers, 96
5.5 Conclusions, 98
Acknowledgements, 98
References, 100
6 Analysis of remotely sensed data for fluvial
geomorphology and river science, 103
David Gilvear and Robert Bryant
6.1 Introduction, 103
6.2 The physical basis, 103
Photogrammetry, 103
Electromagnetic radiation and remote sensing systems, 108
Scale and spatial accuracy issues, 110
Spectral properties and the fluvial environment, 113
Summary overview, 115
6.3 River geomorphology and in-channel processes, 115
2D channel morphology and channel change, 115
3D and quasi-3D channel morphology and channel change, 117
2D mapping of turbidity, suspended solids concentrations and bed
material, 119
6.4 Floodplain geomorphology and fluvial processes, 119
2D and 3D mapping of floodplain morphology, 119
2D mapping of flood inundation, 120
2D and 3D mapping of overbank sedimentation, deposition and
scour, 121
6.5 Conclusions, 122
Acknowledgements, 122
References, 128
7 Geomorphic classification of rivers and streams, 133
G. Mathias Kondolf, Hervé Piégay, Laurent Schmitt and
David R. Montgomery
7.1 Introduction, 133
Classification defined, 133
Purposes of classification, 134
Hierarchy in fluvial geomorphic classification, 136
Underlying philosophies: rivers as a continuum or discrete
types, 136
7.2 Classifications for fluvial understanding, 138
Early classifications, 138
Process-based classification of channel patterns, 139
Hierarchical classifications, 140
Integrating temporal trajectories in classification schemes, 141
7.3 Interactions between geomorphic classifications and
ecology, 143
7.4 Geomorphic classification and quality of river
environments, 144
7.5 Applying geomorphic classification schemes to fluvial
systems, 148
Data collection as distinct from identifying channel type, 148
Tools used to classify spatial units from data, 148
Emergence of data mining: the end and beginning of
classification?, 149
Limitations and misuse of classification in fluvial
geomorphology, 150
Channel classification: tool or crutch?, 152
Acknowledgements, 153
References, 153
8.6 Numerical models, 164
Process-based, reductionist models, 165
Effect-of-process-based reduced complexity models, 167
8.7 Tools for developing a catchment process model:
representation and accuracy considerations, 168
Input data representation, 168
Model performance, 171
8.8 Prospect, 173
Acknowledgements, 174
References, 175
Section IV: Chemical, Physical and
Biological Evidence: Dating,
Emphasizing Spatial Structure and
Fluvial Processes
9 Using environmental radionuclides, mineral
magnetism and sediment geochemistry for tracing
and dating fine fluvial sediments, 183
Des Walling and Ian Foster
9.1 Introduction, 183
9.2 The tools, 183
Gamma-emitting radionuclides, 183
Environmental magnetism, 185
Sediment geochemistry, 187
9.3 Applications, 187
Dating sediment, 187
Documenting soil and sediment redistribution, 190
Sediment source fingerprinting, 193
Reconstructing sediment accumulation rates, yields, sources and
budgets, 197
9.4 Case study, 200
Combining fallout radionuclide measurements and sediment source
fingerprinting for sediment budgeting: Pang and Lambourn
Catchments, United Kingdom, 200
9.5 The prospect, 201
References, 202
10 Vegetation as a tool in the interpretation of fluvial
geomorphic processes and landforms, 210
Cliff R. Hupp, Simon Dufour and Gudrun Bornette
10.1 Introduction, 210
10.2 Scientific background: plant ecological-fluvial geomorphic
relations, 210
10.3 Vegetation as a tool: an overview, 211
10.4 Dendrogeomorphology in fluvial systems, 216
Floods and inundation, 217
Sediment deposition and erosion, 218
Temporal trends, 220
10.5 Description of fluvial landforms through vegetation, 220
Fluvial landforms and floods, 221
Reading landforms through vegetation, 222
10.6 Communities as an indicator of disturbance regime, 223
10.7 Conclusions, 225
References, 226
8 Modelling catchment processes, 159 Section V: Analysis of Processes and
Peter w. Downs and Rafael Real de Asua Forms: Water and Sediment Interactions
8.1 Introduction, 159 11 Channel form and adjustment: characterization,
8.2 Approaches to catchment processes modelling, 160
8.3 Conceptual models, 160 measurement, interpretation and analysis, 237
8.4 Problem-centred interpretative models, 161 Andrew Simon, Janine Castro and Massimo Rinaldi
8.5 Data-driven empirical models, 163 H.l Introduction, 237
Contents vii
11.2 Characterization and measurement, 237
Longitudinal profile and bed elevation characterization and
measurement, 238
Cross-sectional characterization and measurement, 241
Planform characterization and measurement, 242
Three-dimensional characterization and measurement, 244
Bed and bank characterization and measurement, 246
Channel-forming discharge characterization and measurement, 247
11.3 Interpretation and analysis, 249
Empirical methods, 250
Deterministic methods, 252
11.4 Conclusions, 254
References, 254
12 Flow measurement and characterization, 260
Peter /. Whiting
12.1 Introduction, 260
12.2 Velocity measurement, 260
Floats, 260
Mechanical current meters, 261
Electromagnetic current meters, 262
Acoustic Doppler velocimeters, 263
Acoustic Doppler current profilers, 264
Laser Doppler velocimetry (LDV), 265
Other velocity measurements, 265
12.3 Discharge measurements, 265
Integration of point measurements, 266
Acoustic Doppler current profiling, 266
Rating curves, 267
Flumes, 268
Weirs, 268
Ultrasonic methods, 269
Dilution and tracer gauging, 269
Moving-boat method, 270
Electromagnetic method, 270
Correlation of point measurements with discharge, 270
Other techniques for discharge determination, 270
12.4 Indirect methods of discharge estimation, 270
Slope-area method, 270
Contraction method, 271
Step-backwater modelling, 271
12.5 Flow hydrographs and analysis of flow records, 271
Flow hydrograph, 271
Flow duration curves, 272
Extreme value plots, 272
12.6 Issues in selecting methods, 273
Purpose of measurements, 273
Pre-existing data, 273
Precision and accuracy, 274
Channel attributes, 274
Hydrological attributes, 274
Site accessibility and infrastructure for making measurements, 275
Equipment, 275
Time, 275
Cost, 275
12.7 Conclusion, 275
References, 275
13 Measuring bed sediment, 278
G. Mathias Kondolfand Thomas E. Lisle
13.1 Introduction, 278
13.2 Attributes and reporting of sediment size distributions, 278
Presenting particle size distribution curves, 279
Statistical descriptors, 279
13.3 Particle shape and roundness, 282
13.4 Surface versus subsurface layers in gravel bed rivers, 283
13.5 Sampling sand and finer grained sediment, 283
13.6 Sampling and describing the surface of gravel beds, 284
Facies mapping, 284
The pebble count or grid sampling, 284
Visual estimates, 287
Photographic grid methods, 287
13.7 Subsurface sampling methods, 289
Bulk core sampling, 289
Freeze-core sampling, 289
Comparing bulk core and freeze-core sampling, 290
13.8 Sample size requirements, 290
Adequate sample sizes for bulk gravel samples, 290
Sample size and reproducibility of pebble counts, 292
13.9 Comparability of pebble counts and bulk samples, 293
13.10 Sampling strategy, 293
Critique of some popular bed sampling methods, 294
13.11 Applications of bed sediment sampling related to aquatic
habitat, 295
Measurement of fine sediment accumulation in pools: V*, 295
Assessing salmonid spawning gravel quality, 296
Measuring infiltration of fine sediment into spawning gravels, 296
13.12 Case study: determining changes in fine sediment content
during flushing flows, Trinity River, California, 297
Description of case study site, 297
Case study methods and results, 297
Visual estimates of surficial fine sediment in a 3 km reach, 298
Visual estimates and pebble counts at detailed study sites, 298
Bulk sampling at detailed study sites, 298
13.13 Case study: application of V* to French and Bear Creeks,
California, 298
French Creek, 298
Bear Creek, 299
13.14 Conclusion: selecting an appropriate sampling method, 299
Acknowledgement, 302
References, 302
14 Coarse particle tracing in fluvial geomorphology, 306
Marwan A. Hassan and André G. Roy
14.1 Introduction, 306
General overview of coarse particle tracing techniques, 306
Recovery rate and population size, 310
Injection, 310
Detection, 311
Interpretations, 311
Hydraulic data, 311
14.2 Tracing methods, 312
Exotic particles, 312
Painted particles, 312
Fluorescent paint, 312
Radioactive tracers, 313
Ferruginous tracers, 313
Magnets, 314
Artificial magnetic enhancement, 315
Automatic detection of magnetic tracers, 315
Radiofrequency identification and passive integrated transponders
(PIT tags), 316
Radio tracking, 318
14.3 Conclusion, 319
Acknowledgements, 319
References, 319
15 Sediment transport, 324
D. Murray Hicks and Basil Gomez
15.1 Introduction, 324
15.2 Basic concepts, 324
15.3 Suspended load sampling and monitoring, 326
Overview, 326
Suspended sediment gaugings, 326
Continuous monitoring, 328
Suspended sediment ratings, 330
Event suspended sediment yields, 332
vîii Contents
Suspended sediment particle size, 332
Synoptic sampling, 334
15.4 Bedload sampling, measurement and prediction, 335
Overview, 335
Bedload sampling, 335
Bedload traps, 337
Bedload tracer (see Chapter 14), 337
Morphological methods, 337
Bedload equations, 338
Bedload rating curves, 341
15.5 Total load, 342
15.6 Estimating sediment yields from reservoir sedimentation, 342
15.7 Key points for designing a sediment measurement
programme - a summary, 343
15.8 Case example: sediment budget for Upper Clutha River, New
Zealand, 345
Acknowledgements, 347
References, 347
16 Sediment budgets as an organizing framework in
fluvial geomorphology, 357
Leslie M. Reid and Thomas Dunne
16.1 Introduction, 357
The sediment budget defined, 357
History and applications, 358
16.2 Understanding and assessing components of the sediment
system, 360
Hillslope processes and sediment delivery to streams, 360
Sediment transport in channels, 364
Channel and floodplain sediment storage, 364
The catchment: integrating the sediment system, 365
16.3 Designing a sediment budget, 366
Identifying the study objectives, 367
Necessary and sufficient precision, 367
Components to be analysed, 367
Spatial scale of analysis, 368
Temporal scale of analysis, 369
Selection of analysis methods, 370
Integrating the results, 371
Auditing the sediment budget, 371
Assessing uncertainty, 372
16.4 Examples, 373
Evaluating sediment production from a hurricane in Hawaii, 373
Prioritizing erosion control on roads in the Olympic Mountains,
Washington, USA, 374
16.5 Conclusions, 375
References, 375
Section VI: Discriminating, Simulating
and Modelling Processes and Trends
17 Models in fluvial geomorphology, 383
Marco J. Van de Wiel, Yannick Y. Rousseau and Stephen
E. Darby
17.1 Introduction, 383
17.2 Conceptual models, 385
17.3 Statistical models, 385
17.4 Analytical models, 387
Extremal hypothesis approaches, 387
Bank stability analyses, 388
17.5 Numerical models, 389
Concepts of numerical modelling, 390
Reductionist models, 391
Reduced complexity models, 392
Benefits and disadvantages, 393
17.6 Use of remote sensing and GIS in fluvial geomorphological
modelling, 393
17.7 Physical models, 394
17.8 Overview of the modelling process, 394
17.9 Modelling applications in fluvial geomorphology, 395
17.10 Generic framework for fluvial geomorphological modelling
applications, 397
17.11 Case study: meander dynamics, 399
17.12 Conclusion, 402
Acknowledgements, 403
References, 403
18 Modelling flow, sediment transport and
morphodynamics in rivers, 412
Jonathan M. Nelson, Richard R. McDonald, Yasuyuki
Shimizu, Ichiro Kimura, Mohamed Nabi and Kazutake Asahi
18.1 Introduction, 412
Overview, 412
The coupled model concept, 413
18.2 Flow conservation taws, 413
Conservation of mass and momentum, 413
Reynolds stresses and turbulence closures, 414
Hydrostatic assumption, 416
Coordinate systems, 416
Spatial averaging, 418
Dispersion coefficients, 419
Bed stress closure, 419
18.3 Sediment-transport relations, 419
Bedload transport, 420
Suspended load transport, 420
Erosion equation, 421
Gravitational corrections to sediment fluxes, 421
18.4 Numerical methods, 421
18.5 One-dimensional models, 422
One-dimensional processes, 423
One-dimensional models, 423
18.6 Two-dimensional models, 423
Two-dimensional processes, 424
Two-dimensional models, 424
Bar evolution, 426
Examples of two-dimensional model application, 426
18.7 Three-dimensional models, 426
Three-dimensional processes, 427
Three-dimensional models, 428
Three-dimensional sediment-transport models, 429
Bar evolution, 429
Examples of three-dimensional model applications, 429
18.8 Bank evolution models, 432
18.9 Bedform models, 432
18.10 Practical considerations, 435
Choosing an appropriate model, 435
The modelling process, 436
18.11 Conclusions and future directions, 439
References, 439
19 Modelling fluvial morphodynamics, 442
James E. Pizzuto
19.1 Introduction, 442
The process of morphodynamic modelling, 442
Morphodynamic modelling: science or art?, 443
Two categories of fluvial morphodynamic models, 443
19.2 Modelling longitudinal profiles, 443
Alluvial rivers, 443
Bedrock rivers, 444
19.3 Modelling hydraulic geometry of rivers, 445
19.4 Modelling channel planforms, 447
Meandering channels, 447
Braided channels, 449
Anastomosing channels, 449
Contents ix
19.5 Modelling floodplain sedimentation and erosion, 450
Introduction, 450
Modelling event-scale floodplain processes, 451
Geomorphic models of floodplain evolution, 451
The future of floodplain morphodynamic modelling, 451
19.6 Conclusion, 451
References, 452
21.5 Describing, explaining and predicting variables in space and
time, 491
Analysing spatial and temporal patterns through standard
methods, 491
Describing autocorrelated patterns and periodicity of signals, 492
Describing, modelling and predicting the evolution of variables in
space and time, 494
Describing and testing breaks in series, 495
21.6 Relevance and limitations of statistical tools, 496
Quantifyingprecision and uncertainty when measuring, 498
Improving confidence interval when sampling, 499
Validation of explanatory models, 499
Validation of underlying hypotheses, 501
Predictive performance of statistical models, 502
21.7 Conclusion, 502
Acknowledgements, 503
References, 503
20 Experimental studies and practical challenges in
fluvial geomorphology, 456
François Métivier, Chris Paola, Jessica L. Kozarek and
Michal Tal
20.1 Introduction, 456
20.2 Experimental methods and facilities, 457
Basic equipment, 457
Facilities, 458
20.3 Example experimental studies, 463
Wood in rivers, 463
Instream structures, 465
Vegetation, fine sediment and the quest for laboratory-scale
meandering, 466
Other biotic interactions with rivers, 469
20.4 Scaling issues and application of experimental results, 469
20.5 Additional areas for experimentation, 470
Better mechanistic support for using biota in stream
management, 470
Eco-hydrology and river morphology, 471
Hyporheic flow, 471
Scale independence and scaling, 471
Microbial processes, 471
20.6 Conclusion, 472
Acknowledgements, 472
References, 472
21 Statistics and fluvial geomorphology, 476
Hervé Piégay and Lise Vaudor
21.1 Introduction, 476
Current and future use of statistical tools by fluvial
geomorphologists, 476
Interest of statistical tools for fluvial geomorphologists, 477
21.2 Bivariate statistics to explore patterns of forms and their
drivers, 478
Studying a numerical variable according to another one: regression
analysis, 478
Specific case of multiple regression, 480
Describing and testing differences in a variable between groups, 481
21.3 Exploration of datasets using multivariate statistics, 482
Describe a dataset, 482
Explore the co-structure of two datasets, 483
Identify groups within a dataset, 485
Explaining and predicting geomorphic relationships through
multivariate analysis: an often composite process, 487
21.4 Describing, explaining and predicting through probabilities
and distributions, 487
Explaining and predicting probabilities of events: logistic and
multinomial models, 487
Explaining and predicting through distributions: distributional
modelling and Bayesian analyses, 490
Section VII: Conclusion: Applying the Tools
22 Integrating geomorphological tools to address
practical problems in river management and
restoration, 509
Hervé Piégay, G, Mathias Kondolf and David A. Sear
22.1 Introduction, 509
22.2 Motivations for applying fluvial geomorphology, 509
22.3 Meeting the demand: geomorphological training and
application, 510
22.4 The role of geomorphology in planning and management, 511
Interactions between fluvial and human systems, 511
How fluvial geomorphology can inform management, 512
22.5 Current geomorphological practices, 512
Geomorphic diagnosis, 513
Geomorphic practices in project design, 518
Models in geomorphic practices, 519
22.6 Case study: preventing erosion risks, from top-down to
bottom-up approaches, 520
A top-down strategy: identifying the active shifting reaches at a
regional scale, 521
A bottom-up strategy: setting the erodible corridor, 521
22.7 Case study: pre-appraisal approach for sediment
reintroduction in the Rhine: evaluating risks of restoring
processes, 522
22.8 Case study: the River Wylye: a post-project monitoring
framework to establish the performance of a range of
rehabilitation schemes, 524
Objectives, 524
Assessment methods, 525
Results, 525
22.9 Conclusion, 527
Acknowledgements, 529
References, 529
Index, 533
|
any_adam_object | 1 |
author_GND | (DE-588)1011857626 (DE-588)1031721622 |
building | Verbundindex |
bvnumber | BV043656278 |
classification_rvk | RB 10265 RB 10357 |
ctrlnum | (OCoLC)942461555 (DE-599)GBV848295765 |
dewey-full | 551.35 551.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.35 551.3/5 |
dewey-search | 551.35 551.3/5 |
dewey-sort | 3551.35 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Geographie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01725nam a2200421 c 4500</leader><controlfield tag="001">BV043656278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160712 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160705s2016 xx a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2016006833</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470684054</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-68405-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)942461555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV848295765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.3/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10265</subfield><subfield code="0">(DE-625)142220:12679</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10357</subfield><subfield code="0">(DE-625)142220:12706</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tools in fluvial geomorphology</subfield><subfield code="c">edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, UK ; Hoboken, NJ</subfield><subfield code="b">Wiley Blackwell</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 541 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advancing river restoration and management</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluss</subfield><subfield code="0">(DE-588)4131972-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geomorphologie</subfield><subfield code="0">(DE-588)4130684-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fluss</subfield><subfield code="0">(DE-588)4131972-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geomorphologie</subfield><subfield code="0">(DE-588)4130684-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kondolf, G. Mathias</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1011857626</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piégay, Hervé</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1031721622</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029069758&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029069758</subfield></datafield></record></collection> |
id | DE-604.BV043656278 |
illustrated | Illustrated |
indexdate | 2024-12-24T05:10:46Z |
institution | BVB |
isbn | 9780470684054 |
language | English |
lccn | 2016006833 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029069758 |
oclc_num | 942461555 |
open_access_boolean | |
owner | DE-11 DE-824 |
owner_facet | DE-11 DE-824 |
physical | xvii, 541 Seiten Illustrationen, Diagramme, Karten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Wiley Blackwell |
record_format | marc |
series2 | Advancing river restoration and management |
spellingShingle | Tools in fluvial geomorphology Fluss (DE-588)4131972-2 gnd Geomorphologie (DE-588)4130684-3 gnd |
subject_GND | (DE-588)4131972-2 (DE-588)4130684-3 |
title | Tools in fluvial geomorphology |
title_auth | Tools in fluvial geomorphology |
title_exact_search | Tools in fluvial geomorphology |
title_full | Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France |
title_fullStr | Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France |
title_full_unstemmed | Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France |
title_short | Tools in fluvial geomorphology |
title_sort | tools in fluvial geomorphology |
topic | Fluss (DE-588)4131972-2 gnd Geomorphologie (DE-588)4130684-3 gnd |
topic_facet | Fluss Geomorphologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029069758&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kondolfgmathias toolsinfluvialgeomorphology AT piegayherve toolsinfluvialgeomorphology |