Tools in fluvial geomorphology

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Chichester, UK ; Hoboken, NJ Wiley Blackwell 2016
Ausgabe:Second edition
Schriftenreihe:Advancing river restoration and management
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV043656278
003 DE-604
005 20160712
007 t|
008 160705s2016 xx a||| |||| 00||| eng d
010 |a 2016006833 
020 |a 9780470684054  |c cloth  |9 978-0-470-68405-4 
035 |a (OCoLC)942461555 
035 |a (DE-599)GBV848295765 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-11  |a DE-824 
082 0 |a 551.35 
082 0 |a 551.3/5 
084 |a RB 10265  |0 (DE-625)142220:12679  |2 rvk 
084 |a RB 10357  |0 (DE-625)142220:12706  |2 rvk 
245 1 0 |a Tools in fluvial geomorphology  |c edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France 
250 |a Second edition 
264 1 |a Chichester, UK ; Hoboken, NJ  |b Wiley Blackwell  |c 2016 
300 |a xvii, 541 Seiten  |b Illustrationen, Diagramme, Karten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Advancing river restoration and management 
650 0 7 |a Fluss  |0 (DE-588)4131972-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Geomorphologie  |0 (DE-588)4130684-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Fluss  |0 (DE-588)4131972-2  |D s 
689 0 1 |a Geomorphologie  |0 (DE-588)4130684-3  |D s 
689 0 |5 DE-604 
700 1 |a Kondolf, G. Mathias  |e Sonstige  |0 (DE-588)1011857626  |4 oth 
700 1 |a Piégay, Hervé  |d 1967-  |e Sonstige  |0 (DE-588)1031721622  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029069758&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029069758 

Datensatz im Suchindex

_version_ 1819639014929465344
adam_text Titel: Tools in fluvial geomorphology Autor: Kondolf, G. Mathias Jahr: 2016 Contents List of contributors, xi Series Foreword, xv Preface to the Second Edition, xvii Section I: Background 1 Tools in fluvial geomorphology: problem statement and recent practice, 3 G. Mathias Kondolfand Hervé Piégay 1.1 Introduction, 3 1.2 Tools and fluvial geomorphology: the terms, 4 1.3 What is a tool in fluvial geomorphology?, 4 Roots and tools, 4 From conceptual to working tools, 5 Tools and questions, 7 1.4 Overview and trends of tools used in the field, 9 1.5 Scope and organization of this book, 9 Acknowledgements, 11 References, 11 Section II: The Temporal Framework: Dating and Assessing Geomorphological Trends 2 Surficial geological tools in fluvial geomorphology, 15 Robert B. Jacobson, Jim E. O Connor and Takashi Oguchi 2.1 Introduction, 15 2.2 Overview of surficial geological approaches, 15 Sedimentology, 16 Geochronology of alluvium, 19 Stratigraphy, 23 Obtaining surficial geological data, 24 Geological reasoning - putting it together, 25 2.3 Applications of surficial geological approaches to geomorphic interpretation, 27 Palaeohydrological interpretations from surficial geological data, 27 Catastrophic events: exceptional floods and channel and valley-bottom morphology on the Deschutes River, Oregon, 29 Land-use effects and river restoration, 31 2.4 Summary and conclusions, 33 References, 34 3 Archaeology and human artefacts, 40 Anthony G. Brown, François Petit and L. Allen James 3.1 Introduction, 40 3.2 General considerations in using archaeological evidence in geomorphology, 40 3.3 Archaeological tools, 41 Hearths and lithics, 41 Pottery and small artefacts, 41 Structures, 41 Palaeohydrological data from archaeology, 43 Artefacts and fluvial processes, 43 Mining sediment as tracers, 43 3.4 Legacy sediment, 44 Evidence of environmental disturbance and fluvial adjustments, 44 The pristine New World myth, 45 3.5 Using archaeological data: case studies, 45 Case study 1. Fluvial reconstruction from bridge structures on the River Trent, UK, 46 Case study 2. Slags, bedload and hydraulic sorting in Belgium, 48 Case study 3. Artefactual evidence of floodplain deposition and erosion in Belgium, 49 Case study 4. Metal mining and fluvial response: in the Old and New Worlds, 50 3.6 Conclusions, 51 References, 52 4 Using historical data in fluvial geomorphology, 56 Robert C. Grabowski and Angela M. Gurnell 4.1 Introduction, 56 4.2 The documentary record, 57 Early documentary records in Britain, 58 Other examples of the use of documentary sources in fluvial geomorphology, 59 Problems of data reliability and accuracy, 61 4.3 The cartographic record, 63 Some examples of using maps to study channel change, 63 General issues of accuracy, 64 4.4 The topographic record, 66 Some examples of using topographic records to study channel change, 67 Errors and uncertainty in the comparison of topographic records, 68 4.5 The modern historical record: remote-sensing, 69 Accuracy and uncertainty, 71 4.6 Conclusion, 71 Acknowledgements, 71 References, 71 Section III: The Spatial Framework: Emphasizing Spatial Structure and Nested Character of Fluvial Forms 5 System approaches in fluvial geomorphology, 79 Hervé Piégay 5.1 System, fluvial system, hydrosystem, 79 The system, a widespread concept, 79 The fluvial system, 79 The hydrosystem concept, 80 The fluvial anthroposystem concept, 81 5.2 Components of the fluvial system, 83 Scales of analysis and the range of influencing factors, 83 Non-linear temporal trajectory of fluvial systems, 83 5.3 Fluvial system, a conceptual tool for geomorphologists, 84 Partial versus total system approach, 84 The fluvial system, a concept for structuring hypothesis, 84 The comparative space-time framework, 85 Quantitative versus qualitative analysis, 92 From fluvial system to riverscape, 94 V vi Contents 5.4 Examples of applications, 95 Bega River, Australia, 95 The Drôme, Roubion and Eygues Rivers, 96 5.5 Conclusions, 98 Acknowledgements, 98 References, 100 6 Analysis of remotely sensed data for fluvial geomorphology and river science, 103 David Gilvear and Robert Bryant 6.1 Introduction, 103 6.2 The physical basis, 103 Photogrammetry, 103 Electromagnetic radiation and remote sensing systems, 108 Scale and spatial accuracy issues, 110 Spectral properties and the fluvial environment, 113 Summary overview, 115 6.3 River geomorphology and in-channel processes, 115 2D channel morphology and channel change, 115 3D and quasi-3D channel morphology and channel change, 117 2D mapping of turbidity, suspended solids concentrations and bed material, 119 6.4 Floodplain geomorphology and fluvial processes, 119 2D and 3D mapping of floodplain morphology, 119 2D mapping of flood inundation, 120 2D and 3D mapping of overbank sedimentation, deposition and scour, 121 6.5 Conclusions, 122 Acknowledgements, 122 References, 128 7 Geomorphic classification of rivers and streams, 133 G. Mathias Kondolf, Hervé Piégay, Laurent Schmitt and David R. Montgomery 7.1 Introduction, 133 Classification defined, 133 Purposes of classification, 134 Hierarchy in fluvial geomorphic classification, 136 Underlying philosophies: rivers as a continuum or discrete types, 136 7.2 Classifications for fluvial understanding, 138 Early classifications, 138 Process-based classification of channel patterns, 139 Hierarchical classifications, 140 Integrating temporal trajectories in classification schemes, 141 7.3 Interactions between geomorphic classifications and ecology, 143 7.4 Geomorphic classification and quality of river environments, 144 7.5 Applying geomorphic classification schemes to fluvial systems, 148 Data collection as distinct from identifying channel type, 148 Tools used to classify spatial units from data, 148 Emergence of data mining: the end and beginning of classification?, 149 Limitations and misuse of classification in fluvial geomorphology, 150 Channel classification: tool or crutch?, 152 Acknowledgements, 153 References, 153 8.6 Numerical models, 164 Process-based, reductionist models, 165 Effect-of-process-based reduced complexity models, 167 8.7 Tools for developing a catchment process model: representation and accuracy considerations, 168 Input data representation, 168 Model performance, 171 8.8 Prospect, 173 Acknowledgements, 174 References, 175 Section IV: Chemical, Physical and Biological Evidence: Dating, Emphasizing Spatial Structure and Fluvial Processes 9 Using environmental radionuclides, mineral magnetism and sediment geochemistry for tracing and dating fine fluvial sediments, 183 Des Walling and Ian Foster 9.1 Introduction, 183 9.2 The tools, 183 Gamma-emitting radionuclides, 183 Environmental magnetism, 185 Sediment geochemistry, 187 9.3 Applications, 187 Dating sediment, 187 Documenting soil and sediment redistribution, 190 Sediment source fingerprinting, 193 Reconstructing sediment accumulation rates, yields, sources and budgets, 197 9.4 Case study, 200 Combining fallout radionuclide measurements and sediment source fingerprinting for sediment budgeting: Pang and Lambourn Catchments, United Kingdom, 200 9.5 The prospect, 201 References, 202 10 Vegetation as a tool in the interpretation of fluvial geomorphic processes and landforms, 210 Cliff R. Hupp, Simon Dufour and Gudrun Bornette 10.1 Introduction, 210 10.2 Scientific background: plant ecological-fluvial geomorphic relations, 210 10.3 Vegetation as a tool: an overview, 211 10.4 Dendrogeomorphology in fluvial systems, 216 Floods and inundation, 217 Sediment deposition and erosion, 218 Temporal trends, 220 10.5 Description of fluvial landforms through vegetation, 220 Fluvial landforms and floods, 221 Reading landforms through vegetation, 222 10.6 Communities as an indicator of disturbance regime, 223 10.7 Conclusions, 225 References, 226 8 Modelling catchment processes, 159 Section V: Analysis of Processes and Peter w. Downs and Rafael Real de Asua Forms: Water and Sediment Interactions 8.1 Introduction, 159 11 Channel form and adjustment: characterization, 8.2 Approaches to catchment processes modelling, 160 8.3 Conceptual models, 160 measurement, interpretation and analysis, 237 8.4 Problem-centred interpretative models, 161 Andrew Simon, Janine Castro and Massimo Rinaldi 8.5 Data-driven empirical models, 163 H.l Introduction, 237 Contents vii 11.2 Characterization and measurement, 237 Longitudinal profile and bed elevation characterization and measurement, 238 Cross-sectional characterization and measurement, 241 Planform characterization and measurement, 242 Three-dimensional characterization and measurement, 244 Bed and bank characterization and measurement, 246 Channel-forming discharge characterization and measurement, 247 11.3 Interpretation and analysis, 249 Empirical methods, 250 Deterministic methods, 252 11.4 Conclusions, 254 References, 254 12 Flow measurement and characterization, 260 Peter /. Whiting 12.1 Introduction, 260 12.2 Velocity measurement, 260 Floats, 260 Mechanical current meters, 261 Electromagnetic current meters, 262 Acoustic Doppler velocimeters, 263 Acoustic Doppler current profilers, 264 Laser Doppler velocimetry (LDV), 265 Other velocity measurements, 265 12.3 Discharge measurements, 265 Integration of point measurements, 266 Acoustic Doppler current profiling, 266 Rating curves, 267 Flumes, 268 Weirs, 268 Ultrasonic methods, 269 Dilution and tracer gauging, 269 Moving-boat method, 270 Electromagnetic method, 270 Correlation of point measurements with discharge, 270 Other techniques for discharge determination, 270 12.4 Indirect methods of discharge estimation, 270 Slope-area method, 270 Contraction method, 271 Step-backwater modelling, 271 12.5 Flow hydrographs and analysis of flow records, 271 Flow hydrograph, 271 Flow duration curves, 272 Extreme value plots, 272 12.6 Issues in selecting methods, 273 Purpose of measurements, 273 Pre-existing data, 273 Precision and accuracy, 274 Channel attributes, 274 Hydrological attributes, 274 Site accessibility and infrastructure for making measurements, 275 Equipment, 275 Time, 275 Cost, 275 12.7 Conclusion, 275 References, 275 13 Measuring bed sediment, 278 G. Mathias Kondolfand Thomas E. Lisle 13.1 Introduction, 278 13.2 Attributes and reporting of sediment size distributions, 278 Presenting particle size distribution curves, 279 Statistical descriptors, 279 13.3 Particle shape and roundness, 282 13.4 Surface versus subsurface layers in gravel bed rivers, 283 13.5 Sampling sand and finer grained sediment, 283 13.6 Sampling and describing the surface of gravel beds, 284 Facies mapping, 284 The pebble count or grid sampling, 284 Visual estimates, 287 Photographic grid methods, 287 13.7 Subsurface sampling methods, 289 Bulk core sampling, 289 Freeze-core sampling, 289 Comparing bulk core and freeze-core sampling, 290 13.8 Sample size requirements, 290 Adequate sample sizes for bulk gravel samples, 290 Sample size and reproducibility of pebble counts, 292 13.9 Comparability of pebble counts and bulk samples, 293 13.10 Sampling strategy, 293 Critique of some popular bed sampling methods, 294 13.11 Applications of bed sediment sampling related to aquatic habitat, 295 Measurement of fine sediment accumulation in pools: V*, 295 Assessing salmonid spawning gravel quality, 296 Measuring infiltration of fine sediment into spawning gravels, 296 13.12 Case study: determining changes in fine sediment content during flushing flows, Trinity River, California, 297 Description of case study site, 297 Case study methods and results, 297 Visual estimates of surficial fine sediment in a 3 km reach, 298 Visual estimates and pebble counts at detailed study sites, 298 Bulk sampling at detailed study sites, 298 13.13 Case study: application of V* to French and Bear Creeks, California, 298 French Creek, 298 Bear Creek, 299 13.14 Conclusion: selecting an appropriate sampling method, 299 Acknowledgement, 302 References, 302 14 Coarse particle tracing in fluvial geomorphology, 306 Marwan A. Hassan and André G. Roy 14.1 Introduction, 306 General overview of coarse particle tracing techniques, 306 Recovery rate and population size, 310 Injection, 310 Detection, 311 Interpretations, 311 Hydraulic data, 311 14.2 Tracing methods, 312 Exotic particles, 312 Painted particles, 312 Fluorescent paint, 312 Radioactive tracers, 313 Ferruginous tracers, 313 Magnets, 314 Artificial magnetic enhancement, 315 Automatic detection of magnetic tracers, 315 Radiofrequency identification and passive integrated transponders (PIT tags), 316 Radio tracking, 318 14.3 Conclusion, 319 Acknowledgements, 319 References, 319 15 Sediment transport, 324 D. Murray Hicks and Basil Gomez 15.1 Introduction, 324 15.2 Basic concepts, 324 15.3 Suspended load sampling and monitoring, 326 Overview, 326 Suspended sediment gaugings, 326 Continuous monitoring, 328 Suspended sediment ratings, 330 Event suspended sediment yields, 332 vîii Contents Suspended sediment particle size, 332 Synoptic sampling, 334 15.4 Bedload sampling, measurement and prediction, 335 Overview, 335 Bedload sampling, 335 Bedload traps, 337 Bedload tracer (see Chapter 14), 337 Morphological methods, 337 Bedload equations, 338 Bedload rating curves, 341 15.5 Total load, 342 15.6 Estimating sediment yields from reservoir sedimentation, 342 15.7 Key points for designing a sediment measurement programme - a summary, 343 15.8 Case example: sediment budget for Upper Clutha River, New Zealand, 345 Acknowledgements, 347 References, 347 16 Sediment budgets as an organizing framework in fluvial geomorphology, 357 Leslie M. Reid and Thomas Dunne 16.1 Introduction, 357 The sediment budget defined, 357 History and applications, 358 16.2 Understanding and assessing components of the sediment system, 360 Hillslope processes and sediment delivery to streams, 360 Sediment transport in channels, 364 Channel and floodplain sediment storage, 364 The catchment: integrating the sediment system, 365 16.3 Designing a sediment budget, 366 Identifying the study objectives, 367 Necessary and sufficient precision, 367 Components to be analysed, 367 Spatial scale of analysis, 368 Temporal scale of analysis, 369 Selection of analysis methods, 370 Integrating the results, 371 Auditing the sediment budget, 371 Assessing uncertainty, 372 16.4 Examples, 373 Evaluating sediment production from a hurricane in Hawaii, 373 Prioritizing erosion control on roads in the Olympic Mountains, Washington, USA, 374 16.5 Conclusions, 375 References, 375 Section VI: Discriminating, Simulating and Modelling Processes and Trends 17 Models in fluvial geomorphology, 383 Marco J. Van de Wiel, Yannick Y. Rousseau and Stephen E. Darby 17.1 Introduction, 383 17.2 Conceptual models, 385 17.3 Statistical models, 385 17.4 Analytical models, 387 Extremal hypothesis approaches, 387 Bank stability analyses, 388 17.5 Numerical models, 389 Concepts of numerical modelling, 390 Reductionist models, 391 Reduced complexity models, 392 Benefits and disadvantages, 393 17.6 Use of remote sensing and GIS in fluvial geomorphological modelling, 393 17.7 Physical models, 394 17.8 Overview of the modelling process, 394 17.9 Modelling applications in fluvial geomorphology, 395 17.10 Generic framework for fluvial geomorphological modelling applications, 397 17.11 Case study: meander dynamics, 399 17.12 Conclusion, 402 Acknowledgements, 403 References, 403 18 Modelling flow, sediment transport and morphodynamics in rivers, 412 Jonathan M. Nelson, Richard R. McDonald, Yasuyuki Shimizu, Ichiro Kimura, Mohamed Nabi and Kazutake Asahi 18.1 Introduction, 412 Overview, 412 The coupled model concept, 413 18.2 Flow conservation taws, 413 Conservation of mass and momentum, 413 Reynolds stresses and turbulence closures, 414 Hydrostatic assumption, 416 Coordinate systems, 416 Spatial averaging, 418 Dispersion coefficients, 419 Bed stress closure, 419 18.3 Sediment-transport relations, 419 Bedload transport, 420 Suspended load transport, 420 Erosion equation, 421 Gravitational corrections to sediment fluxes, 421 18.4 Numerical methods, 421 18.5 One-dimensional models, 422 One-dimensional processes, 423 One-dimensional models, 423 18.6 Two-dimensional models, 423 Two-dimensional processes, 424 Two-dimensional models, 424 Bar evolution, 426 Examples of two-dimensional model application, 426 18.7 Three-dimensional models, 426 Three-dimensional processes, 427 Three-dimensional models, 428 Three-dimensional sediment-transport models, 429 Bar evolution, 429 Examples of three-dimensional model applications, 429 18.8 Bank evolution models, 432 18.9 Bedform models, 432 18.10 Practical considerations, 435 Choosing an appropriate model, 435 The modelling process, 436 18.11 Conclusions and future directions, 439 References, 439 19 Modelling fluvial morphodynamics, 442 James E. Pizzuto 19.1 Introduction, 442 The process of morphodynamic modelling, 442 Morphodynamic modelling: science or art?, 443 Two categories of fluvial morphodynamic models, 443 19.2 Modelling longitudinal profiles, 443 Alluvial rivers, 443 Bedrock rivers, 444 19.3 Modelling hydraulic geometry of rivers, 445 19.4 Modelling channel planforms, 447 Meandering channels, 447 Braided channels, 449 Anastomosing channels, 449 Contents ix 19.5 Modelling floodplain sedimentation and erosion, 450 Introduction, 450 Modelling event-scale floodplain processes, 451 Geomorphic models of floodplain evolution, 451 The future of floodplain morphodynamic modelling, 451 19.6 Conclusion, 451 References, 452 21.5 Describing, explaining and predicting variables in space and time, 491 Analysing spatial and temporal patterns through standard methods, 491 Describing autocorrelated patterns and periodicity of signals, 492 Describing, modelling and predicting the evolution of variables in space and time, 494 Describing and testing breaks in series, 495 21.6 Relevance and limitations of statistical tools, 496 Quantifyingprecision and uncertainty when measuring, 498 Improving confidence interval when sampling, 499 Validation of explanatory models, 499 Validation of underlying hypotheses, 501 Predictive performance of statistical models, 502 21.7 Conclusion, 502 Acknowledgements, 503 References, 503 20 Experimental studies and practical challenges in fluvial geomorphology, 456 François Métivier, Chris Paola, Jessica L. Kozarek and Michal Tal 20.1 Introduction, 456 20.2 Experimental methods and facilities, 457 Basic equipment, 457 Facilities, 458 20.3 Example experimental studies, 463 Wood in rivers, 463 Instream structures, 465 Vegetation, fine sediment and the quest for laboratory-scale meandering, 466 Other biotic interactions with rivers, 469 20.4 Scaling issues and application of experimental results, 469 20.5 Additional areas for experimentation, 470 Better mechanistic support for using biota in stream management, 470 Eco-hydrology and river morphology, 471 Hyporheic flow, 471 Scale independence and scaling, 471 Microbial processes, 471 20.6 Conclusion, 472 Acknowledgements, 472 References, 472 21 Statistics and fluvial geomorphology, 476 Hervé Piégay and Lise Vaudor 21.1 Introduction, 476 Current and future use of statistical tools by fluvial geomorphologists, 476 Interest of statistical tools for fluvial geomorphologists, 477 21.2 Bivariate statistics to explore patterns of forms and their drivers, 478 Studying a numerical variable according to another one: regression analysis, 478 Specific case of multiple regression, 480 Describing and testing differences in a variable between groups, 481 21.3 Exploration of datasets using multivariate statistics, 482 Describe a dataset, 482 Explore the co-structure of two datasets, 483 Identify groups within a dataset, 485 Explaining and predicting geomorphic relationships through multivariate analysis: an often composite process, 487 21.4 Describing, explaining and predicting through probabilities and distributions, 487 Explaining and predicting probabilities of events: logistic and multinomial models, 487 Explaining and predicting through distributions: distributional modelling and Bayesian analyses, 490 Section VII: Conclusion: Applying the Tools 22 Integrating geomorphological tools to address practical problems in river management and restoration, 509 Hervé Piégay, G, Mathias Kondolf and David A. Sear 22.1 Introduction, 509 22.2 Motivations for applying fluvial geomorphology, 509 22.3 Meeting the demand: geomorphological training and application, 510 22.4 The role of geomorphology in planning and management, 511 Interactions between fluvial and human systems, 511 How fluvial geomorphology can inform management, 512 22.5 Current geomorphological practices, 512 Geomorphic diagnosis, 513 Geomorphic practices in project design, 518 Models in geomorphic practices, 519 22.6 Case study: preventing erosion risks, from top-down to bottom-up approaches, 520 A top-down strategy: identifying the active shifting reaches at a regional scale, 521 A bottom-up strategy: setting the erodible corridor, 521 22.7 Case study: pre-appraisal approach for sediment reintroduction in the Rhine: evaluating risks of restoring processes, 522 22.8 Case study: the River Wylye: a post-project monitoring framework to establish the performance of a range of rehabilitation schemes, 524 Objectives, 524 Assessment methods, 525 Results, 525 22.9 Conclusion, 527 Acknowledgements, 529 References, 529 Index, 533
any_adam_object 1
author_GND (DE-588)1011857626
(DE-588)1031721622
building Verbundindex
bvnumber BV043656278
classification_rvk RB 10265
RB 10357
ctrlnum (OCoLC)942461555
(DE-599)GBV848295765
dewey-full 551.35
551.3/5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 551 - Geology, hydrology, meteorology
dewey-raw 551.35
551.3/5
dewey-search 551.35
551.3/5
dewey-sort 3551.35
dewey-tens 550 - Earth sciences
discipline Geologie / Paläontologie
Geographie
edition Second edition
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01725nam a2200421 c 4500</leader><controlfield tag="001">BV043656278</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160712 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160705s2016 xx a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2016006833</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470684054</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-68405-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)942461555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV848295765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.3/5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10265</subfield><subfield code="0">(DE-625)142220:12679</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10357</subfield><subfield code="0">(DE-625)142220:12706</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tools in fluvial geomorphology</subfield><subfield code="c">edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, UK ; Hoboken, NJ</subfield><subfield code="b">Wiley Blackwell</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 541 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advancing river restoration and management</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluss</subfield><subfield code="0">(DE-588)4131972-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geomorphologie</subfield><subfield code="0">(DE-588)4130684-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fluss</subfield><subfield code="0">(DE-588)4131972-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geomorphologie</subfield><subfield code="0">(DE-588)4130684-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kondolf, G. Mathias</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1011857626</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piégay, Hervé</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1031721622</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029069758&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029069758</subfield></datafield></record></collection>
id DE-604.BV043656278
illustrated Illustrated
indexdate 2024-12-24T05:10:46Z
institution BVB
isbn 9780470684054
language English
lccn 2016006833
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029069758
oclc_num 942461555
open_access_boolean
owner DE-11
DE-824
owner_facet DE-11
DE-824
physical xvii, 541 Seiten Illustrationen, Diagramme, Karten
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Wiley Blackwell
record_format marc
series2 Advancing river restoration and management
spellingShingle Tools in fluvial geomorphology
Fluss (DE-588)4131972-2 gnd
Geomorphologie (DE-588)4130684-3 gnd
subject_GND (DE-588)4131972-2
(DE-588)4130684-3
title Tools in fluvial geomorphology
title_auth Tools in fluvial geomorphology
title_exact_search Tools in fluvial geomorphology
title_full Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France
title_fullStr Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France
title_full_unstemmed Tools in fluvial geomorphology edited by G. Mathias Kondolf, University of California, Berkeley, USA and Hervé Piégay, CNRS, University of Lyon, France
title_short Tools in fluvial geomorphology
title_sort tools in fluvial geomorphology
topic Fluss (DE-588)4131972-2 gnd
Geomorphologie (DE-588)4130684-3 gnd
topic_facet Fluss
Geomorphologie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029069758&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT kondolfgmathias toolsinfluvialgeomorphology
AT piegayherve toolsinfluvialgeomorphology