Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken
Wiley Blackwell
[2016]
|
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV043649127 | ||
003 | DE-604 | ||
005 | 20170302 | ||
007 | t| | ||
008 | 160630s2016 xx a||| |||| 00||| eng d | ||
035 | |a (OCoLC)958437327 | ||
035 | |a (DE-599)BVBBV043649127 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-11 |a DE-355 |a DE-29T | ||
245 | 1 | 0 | |a Stress and environmental regulation of gene expression and adaptation in bacteria |n Volume 2 |c edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France |
264 | 1 | |a Hoboken |b Wiley Blackwell |c [2016] | |
300 | |a xxvii Seiten, Seiten 739-1360, i22 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Bruijn, Frans J. de |4 edt | |
773 | 0 | 8 | |w (DE-604)BV043568393 |g 2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029062749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029062749 |
Datensatz im Suchindex
_version_ | 1819602158790639616 |
---|---|
adam_text | Contents
VOLUME 1
Preface, xiii
Acknowledgements, xiv
List of contributors, xv
1 Introduction, 1
Frans J. de Bruijn
Section 2: Key overview chapters, 3
2.1 Stress-induced changes in transcript stability, 5
Dvora Biran and Eliora Z. Ron
2.2 StressChip for monitoring microbial stress response in
the environment, 9
Joy D. Van Nostrand, Aifen Zhou and Jizhong Zhou
2.3 A revolutionary paradigm of bacterial genome
regulation, 23
Akira Ishihama
2.4 Role of changes in a70-driven transcription in
adaptation of E. coli to conditions of stress or
starvation, 37
Umender K. Sharma
2.5 The distribution and spatial organization of RNA
polymerase in Escherichia coli: growth rate regulation
and stress responses, 48
Ding Jun Jin, Cedric Cagliero, Jerome Izard, Carmen
Mata Martin, and Yan Ning Zhou
2.6 The ECF classification: a phylogenetic reflection of the
regulatory diversity in the extracytoplasmic function a
factor protein family, 64
Daniela Pinto and Thorsten Mascher
2.7 Toxin-antitoxin systems in bacteria and archaea, 97
Yoshihiro Yamaguchi and Masayori Inouye
2.8 Bacterial sRNAs: regulation in stress, 108
Marimuthu Citartan, CarstenA. Raabe, Chee-Hock
Hoe, TimofeyS. Rozhdestvensky, and Thean-Hock
Tang
2.9 Bacterial stress responses as determinants of
antimicrobial resistance, 115
Michael Fruci and Keith Poole
2.10 Transposable elements: a toolkit for stress and
environmental adaptation in bacteria, 137
Anna Ullastres, Miriam Merenciano, Lain Guio, and
Josefa González
2.11 CRISPR-Cas system: a new paradigm for bacterial
stress response through genome rearrangement, 146
Joseph A. Hakim, Hyunmin Koo, Jan D. van Elsas,
Jack T. Trevors, and Asim K. Bej
2.12 The copper metallome in prokaryotic cells, 161
Christopher Reusing, Hend A. Alwathnani, and
Sylvia F. McDevitt
2.13 Ribonucleases as modulators of bacterial stress
response, 174
CâtiaBârria, Vânia Pobre, Afonso M. Bravo, and
Cecilia M. Arraiano
2.14 Double-strand-break repair, mutagenesis, and
stress, 185
Elizabeth Rogers, Raul Correa, Brittany Barreto,
María Angélica Bravo Núñez, P.J. Minnick, Diana
Vera Cruz, Jun Xia, P.J. Hastings, and Susan M.
Rosenberg
2.15 Sigma factor competition in Escherichia coli: kinetic
and thermodynamic perspectives, 196
Kuldeepkumar Ramnaresh Gupta and
Dipankar Chatterji
2.16 Iron homeostasis and iron-sulfur cluster assembly in
Escherichia coli, 203
Huangen Ding
2.17 Mechanisms underlying the antimicrobial capacity of
metals, 215
Joe A. Lemire and Raymond}. Turner
2.18 Acyl-homoserine lactone-based quorum sensing in
members of the marine bacterial Roseobacter clade:
complex cell-to-cell communication controls multiple
physiologies, 225
Alison Buchan, April Mitchell, W. Nathan Cude,
and Shawn Campagna
2.19 Native and synthetic gene regulation to nitrogen
limitation stress, 234
Jorg Schumacher
VI
vin Contents
Section 3: One-, two-, and three-component
regulatory systems and stress responses, 247
3.1 Two-component systems that control the expression of
aromatic hydrocarbon degradation pathways, 249
Tino Krell
3.2 Cross-talk of global regulators in Streptomyces, 257
Juan F. Martin, Fernando Santos-Beneit, Alberto
Sola-Landa, and Paloma Liras
3.3 NO-H-NOX-regulated two-component signaling, 268
DhruvP. Arora, Sandhya Muralidharan, and
Elizabeth M. Boon
3.4 The two-component CheY system in the chemotaxis of
Sinorhizobium meliloti, 111
Martin Haslbeck
3.5 Stimulus perception by histidine kinases, 282
Hannah Schramke, Yang Wang, Ralf Heermann, and
Kirsten Jung
Section 4: Sigma factors and stress responses, 301
4.1 The extracytoplasmic function sigma factor EcfO
protects Bacteroides fragilis against oxidative stress, 303
Ivan C. Ndamukong, Samantha Palethorpe, Michael
Betteken, and C. Jeffrey Smith
4.2 Regulation of energy metabolism by the
extracytoplasmic function (ECF) a factors of
Arcobacter butzleri, 311
Irati Martinez-Malaxetxebarria, Rudy Muts, Linda
van Dijk, Craig T. Parker, William G. Miller, Steven
Huynh, Wim Gaastra, Jos P.M. van Putten, Aurora
Fernandez-Astorga, and Marc M.S.M Wösten
4.3 Extracytoplasmic function sigma factors and stress
responses in Corynebacterium
pseudotuberculosis, 321
Thiago L.P. Castro, Nubia Seyjfert, Anne C. Pinto,
Artur Silva, Vasco Azevedo, and Luis G.C. Pacheco
4.4 The complex roles and regulation of stress response a
factors in Streptomyces coelicolor, 328
Jan Kormanec, Beatrica Sevcikova, Renata Novakova,
Dagmar Homerova, Bronislava Rezuchova, and Erik
Mingy ar
4.5 Proteolytic activation of extra cytoplasmic function
(ECF) cr factors, 344
Jessica L. Hastie and Craig D. Ellermeier
4.6 The ECF family sigma factor aH in Corynebacterium
glutamicum controls the thiol-oxidative stress
response, 352
Tobias Busche and Jörn Kalinowski
4.7 Posttranslational regulation of antisigma factors of
RpoE: a comparison between the Escherichia coli and
Pseudomonas aeruginosa systems, 361
Sundar Pandey, Kyle L. Martins, and Kalai Mathee
Section 5: Small noncoding RNAs and stress
responses, 369
5.1 Bacterial small RNAs in mixed regulatory circuits, 371
Jonathan Jagodnik, Denis Thieffry, and Maude
Guillier
5.2 Role of small RNAs in Pseudomonas aeruginosa
virulence and adaptation, 383
Hansi Kumari, Deepak Balasubramanian, and Kalai
Mathee
5.3 Physiological effects of posttranscriptional regulation
by the small RNA SgrS during metabolic stress in
Escherichia coli, 393
Gregory R. Richards
5.4 Three rpoS-activating small RNAs in pathways
contributing to acid resistance of Escherichia coli, 402
Geunu Bak, Kook Han, Daun Kim, Kwang-sun Kim,
and Younghoon Lee
5.5 Thermal stress noncoding RNAs in prokaryotes and
eukaryotes: a comparative approach, 412
Mercedes de la Fuente and José Luis
Martinez-Guitarte
Section 6: Toxin-antitoxin systems and stress
responses, 423
6.1 Epigenetics mediated by restriction modification
systems, 425
Iwona Mruk and Ichizo Kobayashi
6.2 Toxin-antitoxin systems as regulators of bacterial
fitness and virulence, 437
Brittany A. Fleming and Matthew A. Mulvey
6.3 Mechanisms of stress-activated persister formation in
Escherichia coli, 446
Stephanie M. Amato and Mark P. Brynildsen
6.4 Identification and characterization of type II
toxin-antitoxin systems in the opportunistic pathogen
Acinetobacter baumannii, 454
Edita Suziedéliené, Milda Jurénaité, and Julija
Armalyté
6.5 Transcriptional control of toxin-antitoxin expression:
keeping toxins under wraps until the time is right, 463
Barbara K^dzierska and Finbarr Hayes
Contents ix
6.6 Opposite effects of GraT toxin on stress tolerance
of Pseudomonas putida, 473
Rita Hörak and Hedvig Tamman
Section 7: Stringent response to stress, 479
7.1 Preferential cellular accumulation of ppGpp or pppGpp
in Escherichia coli, 481
K. Potrykus and M. Cashel
7.2 Global Rsh-dependent transcription profile of Brucella
suis during stringent response unravels adaptation to
nutrient starvation and cross-talk with other stress
responses, 489
Stephan Köhler, Nabil Hanna, Safia
Ouahrani-Bettache, Kenneth L. Drake, L. Garry
Adams, and Alessandra Occhialini
7.3 The stringent response and antioxidant defences in
Pseudomonas aeruginosa, 500
Gowthami Sampathkumar, Malika Khakimova, Tevy
Chan, and Dao Nguyen
7.4 Molecular basis of the stringent response in Vibrio
cholerae, 507
Shreya Dasgupta, Bhabatosh Das, Pallabi Basu, and
Rupak K. Bhadra
Section 8: Responses to UV irradiation, 517
8.1 UV stress-responsive genes associated with
enterobacterial integrative conjugative elements of the
ICE SXT/R391 group, 519
Patricia Armshaw and J. Tony Pembroke
8.2 Altered outer membrane proteins in response to UVC
radiation in Vibrio parahaemolyticus
and Vibrio alginolyticus, 528
Fethi Ben Abdallah
8.3 Ultraviolet-B radiation effects on the community,
physiology, and mineralization of magnetotactic
bacteria, 532
Yingzhao Wang and Yongxin Pan
8.4 Nucleotide excision repair system and gene expression
in Mycobacterium smegmatis, 545
Angelina Cordone
Section 9: SOS and double stranded repair systems
and stress, 551
9.1 The SOS response modulates bacterial pathogenesis, 553
Dar ja Zgur Bertok
9.2 RNAP secondary-channel interactors in Escherichia
coli: makers and breakers of genome stability, 561
Priya Sivaramakrishnan and Christophe Herman
9.3 How a large gene network couples mutagenic DNA
break repair to stress in Escherichia coli, 570
Elizabeth Rogers, PJ. Hastings, María Angélica Bravo
Núñez, and Susan M. Rosenberg
9.4 Double-strand DNA break repair in mycobacteria, 577
Richa Gupta and Michael S. Glickman
Section 10: Adaptation to oxidative stress, 587
10.1 Peroxide-sensing transcriptional regulators in
bacteria, 589
James M. Dubbs and Skorn Mongkolsuk
10.2 Regulation of oxidative stress-related genes implicated
in the establishment of opportunistic infections by
Bacteroides fragilis, 603
Felipe Lopes Teixeira, Regina Maria Cavalcanti
Pilotto Domingues, and Leandro Araujo Lobo
10.3 Investigation into oxidative stress response of
Shewanella oneidensis reveals a distinct mechanism, 609
Jie Yuan, Fen Wan, and Haichun Gao
10.4 An omics view on the response to singlet oxygen, 619
Bork A. Berghoff and Gabriele Klug
10.5 Regulators of oxidative stress response genes in
Escherichia coli and their conservation in bacteria, 632
Herb E. Schellhorn, Mohammad Mohiuddin, Sarah
M. Hammond, and Steven Botts
10.6 Hydrogen peroxide resistance in Bifidobacterium
animalis subsp. lactis and Bifidobacterium longum, 638
Taylor S. Oberg and Jeff R. Broadbent
Section 11: Adaptation to osmotic stress, 647
11.1 Interstrain variation in the physiological and
transcriptional responses of Pseudomonas syringae
to osmotic stress, 649
Gwyn A. Beattie, Chiliang Chen, Lindsey Nielsen,
and Brian C. Freeman
11.2 Management of osmotic stress by Bacillus subtilis:
genetics and physiology, 657
Tamara Hoffmann and Erhard Bremer
11.3 Hyperosmotic response of Streptococcus mutans:
from microscopic physiology to transcriptomic
profile, 677
Lu Wang and Xin Xu
11.4 Defective ribosome maturation or function makes
Escherichia coli cells salt-resistant, 687
HyoutaHimeno, Takefusa Tarusawa, Shion Ito, and
Simon Goto
x Contents
Section 12: Dessication tolerance and drought
stress, 693
12.1 Consequences of elevated salt concentrations on
expression profiles in the rhizobium S. meliloti 1021
likely involved in heat and desiccation stress, 695
Jan A.C. Vriezen, Caroline M. Finn, and Klaus
Niisslein
12.2 Genes involved in the formation of desiccation-
resistant cysts in Azotobacter vinelandii, 709
Guadalupe Espin
12.3 Osmotic and desiccation tolerance in Escherichia coli
0157:H7 and Salmonella enterica requires rpoS
(g38), 716
Zach Pratt, Megan Shiroda, Andrew J. Stasic, Josh
Lensmire, and C.W. Kaspar
12.4 Desiccation of Salmonella enterica induces
cross-tolerance to other stresses, 725
Shlomo Sela (Saldinger) and Chellaiah Edward Raja
Index, il
VOLUME 2
Preface, xiii
Acknowledgements, xiv
List of contributors, xv
Section 13: Heat shock responses, 737
13.1 Heat shock response in bacteria with large genomes:
lessons from rhizobia, 739
Ana Alexandre and Solange Oliveira
13.2 Small heat shock proteins in bacteria, 747
Martin Haslbeck
13.3 Transcriptome analysis of bacterial response to heat
shock using next-generation sequencing, 754
Kok-Gan Chan
13.4 Comparative analyses of bacterial transcriptome
reorganisation in response to temperature increase, 757
Bei-Wen Ying and Tetsuya Yomo
13.5 Participation of Ser-Thr protein kinases in regulation
of heat stress responses in Synechocystis, 766
Anna A. Zorina, Galina V. Novikova, and
Dmitry A. Los
Section 14: Chaperonins and stress, 781
14.1 GroEL/ES chaperonin: unfolding and refolding
reactions, 783
Victor V. Marchenkov, Nataliya A. Ryabova, Olga
M. Selivanova, and Gennady V. Semisotnov
14.2 Functional comparison between the DnaK chaperone
systems of Streptococcus intermedius and
Escherichia coli, 791
Toshifumi Tomoyasu and Hideaki Nagamunc
14.3 Coevolution analysis illuminates the evolutionary
plasticity of the chaperonin system GroES/L, 796
Mario A. Fares
14.4 ClpL ATPase: a novel chaperone in bacterial stress
responses, 812
Pratick Khara and Indranil Biswas
14.5 DuplicatedgroEL genes in Myxococcus xanthus
DK1622, 820
Yan Wang, Xiao-jing Chen, and Yue-zhong Li
Section 15: Cold shock responses, 827
15.1 Gene regulation by cold shock proteins via
transcription antitermination, 829
Sangita Phadtare and Konstantin Severinov
15.2 Metagenomic analysis of microbial cold stress proteins
in polar lacustrine ecosystems, 837
Hyunmin Koo, Joseph A. Hakim, and
Asim K. Bej
15.3 Role of two-component systems in cold tolerance of
Clostridium botulinum, 845
Yagmur Herman, Elias Dahlsten, and Hannu
Korkeala
15.4 Cold shock CspA protein production during periodic
temperature cycling in Escherichia coli, 854
David Stopar and Tina Ivancic
15.5 Cold shock response in Escherichia coli: a model
system to study posttranscriptional regulation, 859
Anna Maria Giuliodori
15.6 New insight into cold shock proteins:
RNA-binding proteins involved in stress response and
virulence, 873
Charlotte Michaux and Jean-Christophe
Giard
15.7 Light regulation of cold stress responses in
Synechocystis, 881
Kirill S. Mironov and Dmitry A. Los
15.8 Escherichia coli cold shock gene profiles in response
to overexpression or deletion of CsdA, RNase R, and
PNPase and relevance to low-temperature RNA
metabolism, 890
Sangita Phadtare
Section 16: Adaptation to acid stress, 897
16.1 Acid-adaptive responses of Streptococcus mutans,
and mechanisms of integration with oxidative
stress, 899
Robert G. Quivey Jr., Roberta C. Faustoferri,
Brendaliz Santiago, Jonathon Baker, Benjamin
Cross, and Jin Xiao
Contents x¡
16.2 Acid survival mechanisms in neutralophilic
bacteria, 911
Eugenia Pennacchietti, Fabio Giovannercole, and
Daniela De Biase
16.3 Two-component systems in sensing and adapting to
acid stress in Escherichia coli, 927
Yoko Eguchi and Ryutaro Utsumi
16.4 Sir 1909, a novel two-component response regulator
involved in acid tolerance in Syncchocystis
sp. PCC 6803, 935
Lei Chen, Qiang Ren, Jiangxin Wang, and Weiwen
Zhang
16.5 Comparative mass spectrometry-based proteomics to
elucidate the acid stress response in Lactobacillus
plantarum, 944
Tiaan Heunis, Shelly Deane, and Leon M.T. Dicks
Section 17: Adaptation to nitrosative stress, 953
17.1 Transcriptional regulation by thiol-based sensors of
oxidative and nitrosative stress, 955
Timothy Tapscott, Matthew A. Crawford, and
Andrés Vázquez-Torrcs
17.2 Haemoglobins of Mycobacterium tuberculosis and
their involvement in management of environmental
stress, 967
Kanak L. Dikshit
17.3 What is it about NO that you don’t understand? The
role of heme and HcpR in Porphyromotias
gingivalis’s response to nitrate (NOj), nitrite (N02),
and nitric oxide (NO), 976
¡aninaP. Lewis and Benjamin R. Bclvin
17.4 Di-iron RICs: players in nitrosative-oxidative stress
defences, 989
Ligia S. Nobre and Ligia M. Saraiva
17.5 The Vibrio cholerae stress response: an elaborate
system geared toward overcoming host defenses
during infection, 997
Karl-Gustav Rueggeberg and ¡un Zhu
17.6 Ensemble modeling enables quantitative exploration
of bacterial nitric oxide stress networks, 1009
Jonathan L. Robinson and Mark P. Brynildsen
Section 18: Adaptation to cell envelope stress, 1015
18.1 The Cpx inner membrane stress response, 1017
Randi L. Guest and Tracy L. Raivio
18.2 New insights into stimulus detection and signal
propagation by the Cpx-envelopc stress system, 1025
Patrick Hoernschemeyer and Sabine Hunkc
18.3 Promiscuous functions of cell envelope stress-sensing
systems in Klebsiella pneumoniae and Acinetobacter
baumannii, I03l
Vijaya Bharathi Srinivasan and Govindan
Rajanmlum
18.4 Influence of BrpA and Psr on cell envelope
homeostasis and virulence of Streptococcus
»¡titans, 1043
Zezhnng T. Hen, Jacob P. liitoun, Sutnei Liao, and
Jacqueline Abranches
18.5 Modulators of the bacterial two-component systems
involved in envelope stress, transport, and virulence, 1055
Rajccv Misra
Section 19: Iron homeostasis, 1065
19.1 Iron homeostasis and environmental responses in
cyanobacteria: regulatory networks involving I-ur, 1067
Maria Luisa Pelcato, Maria Teresa lies, and Maria F.
Filial
19.2 Interplay between O, and iron in gene expression:
environmental sensing by I-NR, ArcA, and Pur in
bacteria, 1079
Bryan Troxcll and Jlosni M. Uassan
19.3 The iron-sulfur cluster biosynthesis regulator IscR
contributes to iron homeostasis and resistance to
oxidants in Pseudomonas aeruginosa, 1090
Adisak Romsang, James M. Dubbs, and Shorn
Mongkolsuk
19.4 Transcriptional analysis of iron-responsive regulatory
networks in Caulobacter cresccntus, 1103
Jose /■ . da Silva Ncto
19.5 Protein-protein interactions regulate the release of
iron stored in bacterioferritin, 1109
Huili Yao, Van Wang, and Mario Rivera
19.6 Protein dynamics and ion traffic in bacterioferritin
function: a molecular dynamics simulation study on
wild-type and mutant Pseudomonas aeruginosa
Bfrli, 1118
Jinan Rui, Mario Rivera, and Wonpil lm
Section 20: Metal resistance, 1131
20.1 Nickel toxicity, regulation, and resistance in
bacteria, 1133
Lee Macotnber and Robert P. Hausingcr
20.2 Metabolic networks to counter A1 toxicity
in Pseudomonas fluorcsccns: a holistic view, 1145
Christopher Auger, Nishma D. Appanna, and Vasu
I). Appanna
xii Contents
20.3 Genomics of the resistance to metal and oxidative
stresses in cyanobacteria, 1154
Corinne Cassier-Chauvat and Franck Chauvat
20.4 Cross-species transcriptional network analysis reveals
conservation and variation in response to metal stress
in cyanobacteria, 1165
)iangxin Wang, Gang Wu, Lei Chen, and Weiwen
Zhang
20.5 The extracytoplasmic function sigma factor-mediated
response to heavy metal stress in Caulobacter
crescentus, 1171
Rogério F. Lourenço and Suely L. Gomes
20.6 Metal ion toxicity and oxidative stress
in Streptococcus pneumoniae, 1184
Christopher A. McDevitt, Stephanie L. Begg, and
James C. Pat on
Section 21: Quorum sensing, 1195
21.1 Quorum sensing and bacterial social interactions in
biofilms: bacterial cooperation and competition, 1197
Yung-Hua Li and Xiao-Lin Tian
21.2 Recent advances in bacterial quorum quenching, 1206
Kok-Gan Chan, Wai-Fong Yin, and Kar-Wai Hong
21.3 LuxR-type quorum-sensing regulators that are
antagonized by cognate pheromones, 1221
Stephen C. Winans, Ching-Sung Tsai, Gina T. Ryan,
Ana Lidia Flores-Mireles, Esther Costa, Kevin Y.
Shih, Thomas C. Winans, Youngchang Kim, Robert
Jedrzejczak, and Gekleng Chhor
21.4 Adaptation to environmental stresses in
Streptococcus mutans through the production
of its quorum-sensing peptide pheromone, 1232
Delphine Dufour, Vincent Leung, and Céline M.
Lévesque
21.5 Quorum sensing in Bacillus cereus in relation
to cysteine metabolism and the oxidative
stress response, 1242
Eugénie Huillet and Michel Gohar
Section 22: Chemotaxis and biofilm formation, 1253
22.1 The flagellum as a sensor, 1255
RasikaM. Harshey
22.2 Flagellar motility and fitness in xanthomonads, 1265
Marie-Agnès Jacques, Jean-François Guimbaud,
Martial Briand, Arnaud Indiana, and Armelle
Darrasse
22.3 Understanding Listeria monocytogenes biofilms:
perspectives into mechanisms of adaptation and
regulation under stress conditions, 1274
Lizziane Kretli Winkelstroter, Fernanda Barbosa
dos Reis-Teixeira, Gabriela Satti Lameu, and Elaine
Cristina Pereira De Martinis
22.4 Biofilm formation and environmental signals
in Bordetella, 1279
Tomoko Hanawa
22.5 Biofilm formation by rhizobacteria in response
to water-limiting conditions, 1287
Pablo Bogino, FiorelaNievas, and Walter Giordano
22.6 Stress conditions triggering mucoid-to-nonmucoid
morphotype variation in Burkholderia, and effects on
virulence and biofilm formation, 1295
Leonilde M. Moreira, Inès N. Silva, Ana S. Ferreira,
and Mario R. Santos
22.7 Effect of environmental conditions present
in the fishery industry on the biofilm-forming
ability of Staphylococcus aureus, 1304
Daniel Vâzquez-Sânchez
22.8 Biofilm development and stress response
in the cholera bacterium, 1310
Anisia J. Silva and Jorge A. Benitez
22.9 Outer membrane vesicle secretion: from envelope
stress to biofilm formation, 1322
Thomas Baumgarten and Hermann J. Heipieper
Section 23: Viable but nonculturable (VBNC) cells, 1329
23.1 Resuscitation of Vibrios from the viable but
nonculturable state is induced by quorum-sensing
molecules, 1331
Mesrop Ayrapetyan, Tiffany C. Williams, and James
D. Oliver
23.2 Differential resuscitative effects of pyruvate
and its analogs on VBNC (viable but nonculturable)
Salmonella, 1338
Fumio Amano
23.3 Environmental persistence of Shiga
toxin-producing E. coli, 1346
Philipp Aurass and Antje Flieger
23.4 Of a tenacious and versatile relic: the role of inorganic
polyphosphate (poly-P) metabolism
in the survival, adaptation, and virulence of
Campylobacter jejuni, 1354
Issmatl. Kassem and Gireesh Rajashekara
Index, il
|
any_adam_object | 1 |
author2 | Bruijn, Frans J. de |
author2_role | edt |
author2_variant | f j d b fjd fjdb |
author_facet | Bruijn, Frans J. de |
building | Verbundindex |
bvnumber | BV043649127 |
ctrlnum | (OCoLC)958437327 (DE-599)BVBBV043649127 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01235nam a2200265 cc4500</leader><controlfield tag="001">BV043649127</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170302 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160630s2016 xx a||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)958437327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043649127</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stress and environmental regulation of gene expression and adaptation in bacteria</subfield><subfield code="n">Volume 2</subfield><subfield code="c">edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley Blackwell</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvii Seiten, Seiten 739-1360, i22 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruijn, Frans J. de</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV043568393</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029062749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029062749</subfield></datafield></record></collection> |
id | DE-604.BV043649127 |
illustrated | Illustrated |
indexdate | 2024-12-24T05:10:32Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029062749 |
oclc_num | 958437327 |
open_access_boolean | |
owner | DE-703 DE-11 DE-355 DE-BY-UBR DE-29T |
owner_facet | DE-703 DE-11 DE-355 DE-BY-UBR DE-29T |
physical | xxvii Seiten, Seiten 739-1360, i22 Seiten Illustrationen, Diagramme |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Wiley Blackwell |
record_format | marc |
spellingShingle | Stress and environmental regulation of gene expression and adaptation in bacteria |
title | Stress and environmental regulation of gene expression and adaptation in bacteria |
title_auth | Stress and environmental regulation of gene expression and adaptation in bacteria |
title_exact_search | Stress and environmental regulation of gene expression and adaptation in bacteria |
title_full | Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France |
title_fullStr | Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France |
title_full_unstemmed | Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France |
title_short | Stress and environmental regulation of gene expression and adaptation in bacteria |
title_sort | stress and environmental regulation of gene expression and adaptation in bacteria |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029062749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV043568393 |
work_keys_str_mv | AT bruijnfransjde stressandenvironmentalregulationofgeneexpressionandadaptationinbacteriavolume2 |