Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Bruijn, Frans J. de (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Hoboken Wiley Blackwell [2016]
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV043649127
003 DE-604
005 20170302
007 t|
008 160630s2016 xx a||| |||| 00||| eng d
035 |a (OCoLC)958437327 
035 |a (DE-599)BVBBV043649127 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-703  |a DE-11  |a DE-355  |a DE-29T 
245 1 0 |a Stress and environmental regulation of gene expression and adaptation in bacteria  |n Volume 2  |c edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France 
264 1 |a Hoboken  |b Wiley Blackwell  |c [2016] 
300 |a xxvii Seiten, Seiten 739-1360, i22 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
700 1 |a Bruijn, Frans J. de  |4 edt 
773 0 8 |w (DE-604)BV043568393  |g 2 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029062749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-029062749 

Datensatz im Suchindex

_version_ 1819602158790639616
adam_text Contents VOLUME 1 Preface, xiii Acknowledgements, xiv List of contributors, xv 1 Introduction, 1 Frans J. de Bruijn Section 2: Key overview chapters, 3 2.1 Stress-induced changes in transcript stability, 5 Dvora Biran and Eliora Z. Ron 2.2 StressChip for monitoring microbial stress response in the environment, 9 Joy D. Van Nostrand, Aifen Zhou and Jizhong Zhou 2.3 A revolutionary paradigm of bacterial genome regulation, 23 Akira Ishihama 2.4 Role of changes in a70-driven transcription in adaptation of E. coli to conditions of stress or starvation, 37 Umender K. Sharma 2.5 The distribution and spatial organization of RNA polymerase in Escherichia coli: growth rate regulation and stress responses, 48 Ding Jun Jin, Cedric Cagliero, Jerome Izard, Carmen Mata Martin, and Yan Ning Zhou 2.6 The ECF classification: a phylogenetic reflection of the regulatory diversity in the extracytoplasmic function a factor protein family, 64 Daniela Pinto and Thorsten Mascher 2.7 Toxin-antitoxin systems in bacteria and archaea, 97 Yoshihiro Yamaguchi and Masayori Inouye 2.8 Bacterial sRNAs: regulation in stress, 108 Marimuthu Citartan, CarstenA. Raabe, Chee-Hock Hoe, TimofeyS. Rozhdestvensky, and Thean-Hock Tang 2.9 Bacterial stress responses as determinants of antimicrobial resistance, 115 Michael Fruci and Keith Poole 2.10 Transposable elements: a toolkit for stress and environmental adaptation in bacteria, 137 Anna Ullastres, Miriam Merenciano, Lain Guio, and Josefa González 2.11 CRISPR-Cas system: a new paradigm for bacterial stress response through genome rearrangement, 146 Joseph A. Hakim, Hyunmin Koo, Jan D. van Elsas, Jack T. Trevors, and Asim K. Bej 2.12 The copper metallome in prokaryotic cells, 161 Christopher Reusing, Hend A. Alwathnani, and Sylvia F. McDevitt 2.13 Ribonucleases as modulators of bacterial stress response, 174 CâtiaBârria, Vânia Pobre, Afonso M. Bravo, and Cecilia M. Arraiano 2.14 Double-strand-break repair, mutagenesis, and stress, 185 Elizabeth Rogers, Raul Correa, Brittany Barreto, María Angélica Bravo Núñez, P.J. Minnick, Diana Vera Cruz, Jun Xia, P.J. Hastings, and Susan M. Rosenberg 2.15 Sigma factor competition in Escherichia coli: kinetic and thermodynamic perspectives, 196 Kuldeepkumar Ramnaresh Gupta and Dipankar Chatterji 2.16 Iron homeostasis and iron-sulfur cluster assembly in Escherichia coli, 203 Huangen Ding 2.17 Mechanisms underlying the antimicrobial capacity of metals, 215 Joe A. Lemire and Raymond}. Turner 2.18 Acyl-homoserine lactone-based quorum sensing in members of the marine bacterial Roseobacter clade: complex cell-to-cell communication controls multiple physiologies, 225 Alison Buchan, April Mitchell, W. Nathan Cude, and Shawn Campagna 2.19 Native and synthetic gene regulation to nitrogen limitation stress, 234 Jorg Schumacher VI vin Contents Section 3: One-, two-, and three-component regulatory systems and stress responses, 247 3.1 Two-component systems that control the expression of aromatic hydrocarbon degradation pathways, 249 Tino Krell 3.2 Cross-talk of global regulators in Streptomyces, 257 Juan F. Martin, Fernando Santos-Beneit, Alberto Sola-Landa, and Paloma Liras 3.3 NO-H-NOX-regulated two-component signaling, 268 DhruvP. Arora, Sandhya Muralidharan, and Elizabeth M. Boon 3.4 The two-component CheY system in the chemotaxis of Sinorhizobium meliloti, 111 Martin Haslbeck 3.5 Stimulus perception by histidine kinases, 282 Hannah Schramke, Yang Wang, Ralf Heermann, and Kirsten Jung Section 4: Sigma factors and stress responses, 301 4.1 The extracytoplasmic function sigma factor EcfO protects Bacteroides fragilis against oxidative stress, 303 Ivan C. Ndamukong, Samantha Palethorpe, Michael Betteken, and C. Jeffrey Smith 4.2 Regulation of energy metabolism by the extracytoplasmic function (ECF) a factors of Arcobacter butzleri, 311 Irati Martinez-Malaxetxebarria, Rudy Muts, Linda van Dijk, Craig T. Parker, William G. Miller, Steven Huynh, Wim Gaastra, Jos P.M. van Putten, Aurora Fernandez-Astorga, and Marc M.S.M Wösten 4.3 Extracytoplasmic function sigma factors and stress responses in Corynebacterium pseudotuberculosis, 321 Thiago L.P. Castro, Nubia Seyjfert, Anne C. Pinto, Artur Silva, Vasco Azevedo, and Luis G.C. Pacheco 4.4 The complex roles and regulation of stress response a factors in Streptomyces coelicolor, 328 Jan Kormanec, Beatrica Sevcikova, Renata Novakova, Dagmar Homerova, Bronislava Rezuchova, and Erik Mingy ar 4.5 Proteolytic activation of extra cytoplasmic function (ECF) cr factors, 344 Jessica L. Hastie and Craig D. Ellermeier 4.6 The ECF family sigma factor aH in Corynebacterium glutamicum controls the thiol-oxidative stress response, 352 Tobias Busche and Jörn Kalinowski 4.7 Posttranslational regulation of antisigma factors of RpoE: a comparison between the Escherichia coli and Pseudomonas aeruginosa systems, 361 Sundar Pandey, Kyle L. Martins, and Kalai Mathee Section 5: Small noncoding RNAs and stress responses, 369 5.1 Bacterial small RNAs in mixed regulatory circuits, 371 Jonathan Jagodnik, Denis Thieffry, and Maude Guillier 5.2 Role of small RNAs in Pseudomonas aeruginosa virulence and adaptation, 383 Hansi Kumari, Deepak Balasubramanian, and Kalai Mathee 5.3 Physiological effects of posttranscriptional regulation by the small RNA SgrS during metabolic stress in Escherichia coli, 393 Gregory R. Richards 5.4 Three rpoS-activating small RNAs in pathways contributing to acid resistance of Escherichia coli, 402 Geunu Bak, Kook Han, Daun Kim, Kwang-sun Kim, and Younghoon Lee 5.5 Thermal stress noncoding RNAs in prokaryotes and eukaryotes: a comparative approach, 412 Mercedes de la Fuente and José Luis Martinez-Guitarte Section 6: Toxin-antitoxin systems and stress responses, 423 6.1 Epigenetics mediated by restriction modification systems, 425 Iwona Mruk and Ichizo Kobayashi 6.2 Toxin-antitoxin systems as regulators of bacterial fitness and virulence, 437 Brittany A. Fleming and Matthew A. Mulvey 6.3 Mechanisms of stress-activated persister formation in Escherichia coli, 446 Stephanie M. Amato and Mark P. Brynildsen 6.4 Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii, 454 Edita Suziedéliené, Milda Jurénaité, and Julija Armalyté 6.5 Transcriptional control of toxin-antitoxin expression: keeping toxins under wraps until the time is right, 463 Barbara K^dzierska and Finbarr Hayes Contents ix 6.6 Opposite effects of GraT toxin on stress tolerance of Pseudomonas putida, 473 Rita Hörak and Hedvig Tamman Section 7: Stringent response to stress, 479 7.1 Preferential cellular accumulation of ppGpp or pppGpp in Escherichia coli, 481 K. Potrykus and M. Cashel 7.2 Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses, 489 Stephan Köhler, Nabil Hanna, Safia Ouahrani-Bettache, Kenneth L. Drake, L. Garry Adams, and Alessandra Occhialini 7.3 The stringent response and antioxidant defences in Pseudomonas aeruginosa, 500 Gowthami Sampathkumar, Malika Khakimova, Tevy Chan, and Dao Nguyen 7.4 Molecular basis of the stringent response in Vibrio cholerae, 507 Shreya Dasgupta, Bhabatosh Das, Pallabi Basu, and Rupak K. Bhadra Section 8: Responses to UV irradiation, 517 8.1 UV stress-responsive genes associated with enterobacterial integrative conjugative elements of the ICE SXT/R391 group, 519 Patricia Armshaw and J. Tony Pembroke 8.2 Altered outer membrane proteins in response to UVC radiation in Vibrio parahaemolyticus and Vibrio alginolyticus, 528 Fethi Ben Abdallah 8.3 Ultraviolet-B radiation effects on the community, physiology, and mineralization of magnetotactic bacteria, 532 Yingzhao Wang and Yongxin Pan 8.4 Nucleotide excision repair system and gene expression in Mycobacterium smegmatis, 545 Angelina Cordone Section 9: SOS and double stranded repair systems and stress, 551 9.1 The SOS response modulates bacterial pathogenesis, 553 Dar ja Zgur Bertok 9.2 RNAP secondary-channel interactors in Escherichia coli: makers and breakers of genome stability, 561 Priya Sivaramakrishnan and Christophe Herman 9.3 How a large gene network couples mutagenic DNA break repair to stress in Escherichia coli, 570 Elizabeth Rogers, PJ. Hastings, María Angélica Bravo Núñez, and Susan M. Rosenberg 9.4 Double-strand DNA break repair in mycobacteria, 577 Richa Gupta and Michael S. Glickman Section 10: Adaptation to oxidative stress, 587 10.1 Peroxide-sensing transcriptional regulators in bacteria, 589 James M. Dubbs and Skorn Mongkolsuk 10.2 Regulation of oxidative stress-related genes implicated in the establishment of opportunistic infections by Bacteroides fragilis, 603 Felipe Lopes Teixeira, Regina Maria Cavalcanti Pilotto Domingues, and Leandro Araujo Lobo 10.3 Investigation into oxidative stress response of Shewanella oneidensis reveals a distinct mechanism, 609 Jie Yuan, Fen Wan, and Haichun Gao 10.4 An omics view on the response to singlet oxygen, 619 Bork A. Berghoff and Gabriele Klug 10.5 Regulators of oxidative stress response genes in Escherichia coli and their conservation in bacteria, 632 Herb E. Schellhorn, Mohammad Mohiuddin, Sarah M. Hammond, and Steven Botts 10.6 Hydrogen peroxide resistance in Bifidobacterium animalis subsp. lactis and Bifidobacterium longum, 638 Taylor S. Oberg and Jeff R. Broadbent Section 11: Adaptation to osmotic stress, 647 11.1 Interstrain variation in the physiological and transcriptional responses of Pseudomonas syringae to osmotic stress, 649 Gwyn A. Beattie, Chiliang Chen, Lindsey Nielsen, and Brian C. Freeman 11.2 Management of osmotic stress by Bacillus subtilis: genetics and physiology, 657 Tamara Hoffmann and Erhard Bremer 11.3 Hyperosmotic response of Streptococcus mutans: from microscopic physiology to transcriptomic profile, 677 Lu Wang and Xin Xu 11.4 Defective ribosome maturation or function makes Escherichia coli cells salt-resistant, 687 HyoutaHimeno, Takefusa Tarusawa, Shion Ito, and Simon Goto x Contents Section 12: Dessication tolerance and drought stress, 693 12.1 Consequences of elevated salt concentrations on expression profiles in the rhizobium S. meliloti 1021 likely involved in heat and desiccation stress, 695 Jan A.C. Vriezen, Caroline M. Finn, and Klaus Niisslein 12.2 Genes involved in the formation of desiccation- resistant cysts in Azotobacter vinelandii, 709 Guadalupe Espin 12.3 Osmotic and desiccation tolerance in Escherichia coli 0157:H7 and Salmonella enterica requires rpoS (g38), 716 Zach Pratt, Megan Shiroda, Andrew J. Stasic, Josh Lensmire, and C.W. Kaspar 12.4 Desiccation of Salmonella enterica induces cross-tolerance to other stresses, 725 Shlomo Sela (Saldinger) and Chellaiah Edward Raja Index, il VOLUME 2 Preface, xiii Acknowledgements, xiv List of contributors, xv Section 13: Heat shock responses, 737 13.1 Heat shock response in bacteria with large genomes: lessons from rhizobia, 739 Ana Alexandre and Solange Oliveira 13.2 Small heat shock proteins in bacteria, 747 Martin Haslbeck 13.3 Transcriptome analysis of bacterial response to heat shock using next-generation sequencing, 754 Kok-Gan Chan 13.4 Comparative analyses of bacterial transcriptome reorganisation in response to temperature increase, 757 Bei-Wen Ying and Tetsuya Yomo 13.5 Participation of Ser-Thr protein kinases in regulation of heat stress responses in Synechocystis, 766 Anna A. Zorina, Galina V. Novikova, and Dmitry A. Los Section 14: Chaperonins and stress, 781 14.1 GroEL/ES chaperonin: unfolding and refolding reactions, 783 Victor V. Marchenkov, Nataliya A. Ryabova, Olga M. Selivanova, and Gennady V. Semisotnov 14.2 Functional comparison between the DnaK chaperone systems of Streptococcus intermedius and Escherichia coli, 791 Toshifumi Tomoyasu and Hideaki Nagamunc 14.3 Coevolution analysis illuminates the evolutionary plasticity of the chaperonin system GroES/L, 796 Mario A. Fares 14.4 ClpL ATPase: a novel chaperone in bacterial stress responses, 812 Pratick Khara and Indranil Biswas 14.5 DuplicatedgroEL genes in Myxococcus xanthus DK1622, 820 Yan Wang, Xiao-jing Chen, and Yue-zhong Li Section 15: Cold shock responses, 827 15.1 Gene regulation by cold shock proteins via transcription antitermination, 829 Sangita Phadtare and Konstantin Severinov 15.2 Metagenomic analysis of microbial cold stress proteins in polar lacustrine ecosystems, 837 Hyunmin Koo, Joseph A. Hakim, and Asim K. Bej 15.3 Role of two-component systems in cold tolerance of Clostridium botulinum, 845 Yagmur Herman, Elias Dahlsten, and Hannu Korkeala 15.4 Cold shock CspA protein production during periodic temperature cycling in Escherichia coli, 854 David Stopar and Tina Ivancic 15.5 Cold shock response in Escherichia coli: a model system to study posttranscriptional regulation, 859 Anna Maria Giuliodori 15.6 New insight into cold shock proteins: RNA-binding proteins involved in stress response and virulence, 873 Charlotte Michaux and Jean-Christophe Giard 15.7 Light regulation of cold stress responses in Synechocystis, 881 Kirill S. Mironov and Dmitry A. Los 15.8 Escherichia coli cold shock gene profiles in response to overexpression or deletion of CsdA, RNase R, and PNPase and relevance to low-temperature RNA metabolism, 890 Sangita Phadtare Section 16: Adaptation to acid stress, 897 16.1 Acid-adaptive responses of Streptococcus mutans, and mechanisms of integration with oxidative stress, 899 Robert G. Quivey Jr., Roberta C. Faustoferri, Brendaliz Santiago, Jonathon Baker, Benjamin Cross, and Jin Xiao Contents x¡ 16.2 Acid survival mechanisms in neutralophilic bacteria, 911 Eugenia Pennacchietti, Fabio Giovannercole, and Daniela De Biase 16.3 Two-component systems in sensing and adapting to acid stress in Escherichia coli, 927 Yoko Eguchi and Ryutaro Utsumi 16.4 Sir 1909, a novel two-component response regulator involved in acid tolerance in Syncchocystis sp. PCC 6803, 935 Lei Chen, Qiang Ren, Jiangxin Wang, and Weiwen Zhang 16.5 Comparative mass spectrometry-based proteomics to elucidate the acid stress response in Lactobacillus plantarum, 944 Tiaan Heunis, Shelly Deane, and Leon M.T. Dicks Section 17: Adaptation to nitrosative stress, 953 17.1 Transcriptional regulation by thiol-based sensors of oxidative and nitrosative stress, 955 Timothy Tapscott, Matthew A. Crawford, and Andrés Vázquez-Torrcs 17.2 Haemoglobins of Mycobacterium tuberculosis and their involvement in management of environmental stress, 967 Kanak L. Dikshit 17.3 What is it about NO that you don’t understand? The role of heme and HcpR in Porphyromotias gingivalis’s response to nitrate (NOj), nitrite (N02), and nitric oxide (NO), 976 ¡aninaP. Lewis and Benjamin R. Bclvin 17.4 Di-iron RICs: players in nitrosative-oxidative stress defences, 989 Ligia S. Nobre and Ligia M. Saraiva 17.5 The Vibrio cholerae stress response: an elaborate system geared toward overcoming host defenses during infection, 997 Karl-Gustav Rueggeberg and ¡un Zhu 17.6 Ensemble modeling enables quantitative exploration of bacterial nitric oxide stress networks, 1009 Jonathan L. Robinson and Mark P. Brynildsen Section 18: Adaptation to cell envelope stress, 1015 18.1 The Cpx inner membrane stress response, 1017 Randi L. Guest and Tracy L. Raivio 18.2 New insights into stimulus detection and signal propagation by the Cpx-envelopc stress system, 1025 Patrick Hoernschemeyer and Sabine Hunkc 18.3 Promiscuous functions of cell envelope stress-sensing systems in Klebsiella pneumoniae and Acinetobacter baumannii, I03l Vijaya Bharathi Srinivasan and Govindan Rajanmlum 18.4 Influence of BrpA and Psr on cell envelope homeostasis and virulence of Streptococcus »¡titans, 1043 Zezhnng T. Hen, Jacob P. liitoun, Sutnei Liao, and Jacqueline Abranches 18.5 Modulators of the bacterial two-component systems involved in envelope stress, transport, and virulence, 1055 Rajccv Misra Section 19: Iron homeostasis, 1065 19.1 Iron homeostasis and environmental responses in cyanobacteria: regulatory networks involving I-ur, 1067 Maria Luisa Pelcato, Maria Teresa lies, and Maria F. Filial 19.2 Interplay between O, and iron in gene expression: environmental sensing by I-NR, ArcA, and Pur in bacteria, 1079 Bryan Troxcll and Jlosni M. Uassan 19.3 The iron-sulfur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa, 1090 Adisak Romsang, James M. Dubbs, and Shorn Mongkolsuk 19.4 Transcriptional analysis of iron-responsive regulatory networks in Caulobacter cresccntus, 1103 Jose /■ . da Silva Ncto 19.5 Protein-protein interactions regulate the release of iron stored in bacterioferritin, 1109 Huili Yao, Van Wang, and Mario Rivera 19.6 Protein dynamics and ion traffic in bacterioferritin function: a molecular dynamics simulation study on wild-type and mutant Pseudomonas aeruginosa Bfrli, 1118 Jinan Rui, Mario Rivera, and Wonpil lm Section 20: Metal resistance, 1131 20.1 Nickel toxicity, regulation, and resistance in bacteria, 1133 Lee Macotnber and Robert P. Hausingcr 20.2 Metabolic networks to counter A1 toxicity in Pseudomonas fluorcsccns: a holistic view, 1145 Christopher Auger, Nishma D. Appanna, and Vasu I). Appanna xii Contents 20.3 Genomics of the resistance to metal and oxidative stresses in cyanobacteria, 1154 Corinne Cassier-Chauvat and Franck Chauvat 20.4 Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria, 1165 )iangxin Wang, Gang Wu, Lei Chen, and Weiwen Zhang 20.5 The extracytoplasmic function sigma factor-mediated response to heavy metal stress in Caulobacter crescentus, 1171 Rogério F. Lourenço and Suely L. Gomes 20.6 Metal ion toxicity and oxidative stress in Streptococcus pneumoniae, 1184 Christopher A. McDevitt, Stephanie L. Begg, and James C. Pat on Section 21: Quorum sensing, 1195 21.1 Quorum sensing and bacterial social interactions in biofilms: bacterial cooperation and competition, 1197 Yung-Hua Li and Xiao-Lin Tian 21.2 Recent advances in bacterial quorum quenching, 1206 Kok-Gan Chan, Wai-Fong Yin, and Kar-Wai Hong 21.3 LuxR-type quorum-sensing regulators that are antagonized by cognate pheromones, 1221 Stephen C. Winans, Ching-Sung Tsai, Gina T. Ryan, Ana Lidia Flores-Mireles, Esther Costa, Kevin Y. Shih, Thomas C. Winans, Youngchang Kim, Robert Jedrzejczak, and Gekleng Chhor 21.4 Adaptation to environmental stresses in Streptococcus mutans through the production of its quorum-sensing peptide pheromone, 1232 Delphine Dufour, Vincent Leung, and Céline M. Lévesque 21.5 Quorum sensing in Bacillus cereus in relation to cysteine metabolism and the oxidative stress response, 1242 Eugénie Huillet and Michel Gohar Section 22: Chemotaxis and biofilm formation, 1253 22.1 The flagellum as a sensor, 1255 RasikaM. Harshey 22.2 Flagellar motility and fitness in xanthomonads, 1265 Marie-Agnès Jacques, Jean-François Guimbaud, Martial Briand, Arnaud Indiana, and Armelle Darrasse 22.3 Understanding Listeria monocytogenes biofilms: perspectives into mechanisms of adaptation and regulation under stress conditions, 1274 Lizziane Kretli Winkelstroter, Fernanda Barbosa dos Reis-Teixeira, Gabriela Satti Lameu, and Elaine Cristina Pereira De Martinis 22.4 Biofilm formation and environmental signals in Bordetella, 1279 Tomoko Hanawa 22.5 Biofilm formation by rhizobacteria in response to water-limiting conditions, 1287 Pablo Bogino, FiorelaNievas, and Walter Giordano 22.6 Stress conditions triggering mucoid-to-nonmucoid morphotype variation in Burkholderia, and effects on virulence and biofilm formation, 1295 Leonilde M. Moreira, Inès N. Silva, Ana S. Ferreira, and Mario R. Santos 22.7 Effect of environmental conditions present in the fishery industry on the biofilm-forming ability of Staphylococcus aureus, 1304 Daniel Vâzquez-Sânchez 22.8 Biofilm development and stress response in the cholera bacterium, 1310 Anisia J. Silva and Jorge A. Benitez 22.9 Outer membrane vesicle secretion: from envelope stress to biofilm formation, 1322 Thomas Baumgarten and Hermann J. Heipieper Section 23: Viable but nonculturable (VBNC) cells, 1329 23.1 Resuscitation of Vibrios from the viable but nonculturable state is induced by quorum-sensing molecules, 1331 Mesrop Ayrapetyan, Tiffany C. Williams, and James D. Oliver 23.2 Differential resuscitative effects of pyruvate and its analogs on VBNC (viable but nonculturable) Salmonella, 1338 Fumio Amano 23.3 Environmental persistence of Shiga toxin-producing E. coli, 1346 Philipp Aurass and Antje Flieger 23.4 Of a tenacious and versatile relic: the role of inorganic polyphosphate (poly-P) metabolism in the survival, adaptation, and virulence of Campylobacter jejuni, 1354 Issmatl. Kassem and Gireesh Rajashekara Index, il
any_adam_object 1
author2 Bruijn, Frans J. de
author2_role edt
author2_variant f j d b fjd fjdb
author_facet Bruijn, Frans J. de
building Verbundindex
bvnumber BV043649127
ctrlnum (OCoLC)958437327
(DE-599)BVBBV043649127
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01235nam a2200265 cc4500</leader><controlfield tag="001">BV043649127</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170302 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160630s2016 xx a||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)958437327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043649127</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stress and environmental regulation of gene expression and adaptation in bacteria</subfield><subfield code="n">Volume 2</subfield><subfield code="c">edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">Wiley Blackwell</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvii Seiten, Seiten 739-1360, i22 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruijn, Frans J. de</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV043568393</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=029062749&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029062749</subfield></datafield></record></collection>
id DE-604.BV043649127
illustrated Illustrated
indexdate 2024-12-24T05:10:32Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-029062749
oclc_num 958437327
open_access_boolean
owner DE-703
DE-11
DE-355
DE-BY-UBR
DE-29T
owner_facet DE-703
DE-11
DE-355
DE-BY-UBR
DE-29T
physical xxvii Seiten, Seiten 739-1360, i22 Seiten Illustrationen, Diagramme
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Wiley Blackwell
record_format marc
spellingShingle Stress and environmental regulation of gene expression and adaptation in bacteria
title Stress and environmental regulation of gene expression and adaptation in bacteria
title_auth Stress and environmental regulation of gene expression and adaptation in bacteria
title_exact_search Stress and environmental regulation of gene expression and adaptation in bacteria
title_full Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
title_fullStr Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
title_full_unstemmed Stress and environmental regulation of gene expression and adaptation in bacteria Volume 2 edited by Frans J. de Bruijn, INRA-CNRS Laboratory of Plant-Microbe Interactions (LIPM), Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
title_short Stress and environmental regulation of gene expression and adaptation in bacteria
title_sort stress and environmental regulation of gene expression and adaptation in bacteria
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029062749&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV043568393
work_keys_str_mv AT bruijnfransjde stressandenvironmentalregulationofgeneexpressionandadaptationinbacteriavolume2