Topological fixed point theory for singlevalued and multivalued mappings and applications

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ben Amar, Afif (VerfasserIn), O'Regan, Donal 1959- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: [Cham] Springer [2016]
Schlagworte:
Online-Zugang:DE-634
DE-898
DE-861
DE-91
DE-19
DE-703
DE-20
DE-824
DE-739
URL des Erstveröffentlichers
Inhaltsverzeichnis
Abstract
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043579759
003 DE-604
005 20220315
007 cr|uuu---uuuuu
008 160601s2016 xx o|||| 00||| eng d
020 |a 9783319319483  |c Online  |9 978-3-319-31948-3 
024 7 |a 10.1007/978-3-319-31948-3  |2 doi 
035 |a (ZDB-2-SMA)978-3-319-31948-3 
035 |a (OCoLC)951017594 
035 |a (DE-599)BVBBV043579759 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-20  |a DE-739  |a DE-634  |a DE-898  |a DE-861  |a DE-703  |a DE-824  |a DE-83 
082 0 |a 515.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Ben Amar, Afif  |e Verfasser  |4 aut 
245 1 0 |a Topological fixed point theory for singlevalued and multivalued mappings and applications  |c Afif Ben Amar, Donal O'Regan 
264 1 |a [Cham]  |b Springer  |c [2016] 
264 4 |c © 2016 
300 |a 1 Online-Ressource (X, 194 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
650 4 |a Mathematics 
650 4 |a Approximation theory 
650 4 |a Functional analysis 
650 4 |a Functional Analysis 
650 4 |a Approximations and Expansions 
650 4 |a Mathematik 
700 1 |a O'Regan, Donal  |d 1959-  |e Verfasser  |0 (DE-588)138809879  |4 aut 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-3-319-31947-6 
856 4 0 |u https://doi.org/10.1007/978-3-319-31948-3  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994431&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994431&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-SMA 
940 1 |q ZDB-2-SMA_2016 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028994431 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-898  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-824  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-31948-3  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2195424
DE-BY-UBM_katkey 5301918
DE-BY-UBM_local_url https://doi.org/10.1007/978-3-319-31948-3
Verlag
_version_ 1823055928277073920
adam_text TOPOLOGICAL FIXED POINT THEORY FOR SINGLEVALUED AND MULTIVALUED MAPPINGS AND APPLICATIONS / BEN AMAR, AFIF : 2016 TABLE OF CONTENTS / INHALTSVERZEICHNIS BASIC CONCEPTS NONLINEAR EIGENVALUE PROBLEMS IN DUNFORD-PETTIS SPACES FIXED POINT THEORY IN LOCALLY CONVEX SPACES FIXED POINTS FOR MAPS WITH WEAKLY SEQUENTIALLY-CLOSED FIXED POINT THEORY IN BANACH ALGEBRAS FIXED POINT THEORY FOR (WS)-COMPACT OPERATORS APPROXIMATE FIXED POINT THEOREMS IN BANACH SPACES. DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. TOPOLOGICAL FIXED POINT THEORY FOR SINGLEVALUED AND MULTIVALUED MAPPINGS AND APPLICATIONS / BEN AMAR, AFIF : 2016 ABSTRACT / INHALTSTEXT THIS IS A MONOGRAPH COVERING TOPOLOGICAL FIXED POINT THEORY FOR SEVERAL CLASSES OF SINGLE AND MULTIVALUED MAPS. THE AUTHORS BEGIN BY PRESENTING BASIC NOTIONS IN LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES. SPECIAL ATTENTION IS THEN DEVOTED TO WEAK COMPACTNESS, IN PARTICULAR TO THE THEOREMS OF EBERLEIN–SMULIAN, GROTHENDICK AND DUNFORD–PETTIS. LERAY–SCHAUDER ALTERNATIVES AND EIGENVALUE PROBLEMS FOR DECOMPOSABLE SINGLE-VALUED NONLINEAR WEAKLY COMPACT OPERATORS IN DUNFORD–PETTIS SPACES ARE CONSIDERED, IN ADDITION TO SOME VARIANTS OF SCHAUDER, KRASNOSELSKII, SADOVSKII, AND LERAY–SCHAUDER TYPE FIXED POINT THEOREMS FOR DIFFERENT CLASSES OF WEAKLY SEQUENTIALLY CONTINUOUS OPERATORS ON GENERAL BANACH SPACES. THE AUTHORS THEN PROCEED WITH AN EXAMINATION OF SADOVSKII, FURI–PERA, AND KRASNOSELSKII FIXED POINT THEOREMS AND NONLINEAR LERAY–SCHAUDER ALTERNATIVES IN THE FRAMEWORK OF WEAK TOPOLOGIES AND INVOLVING MULTIVALUED MAPPINGS WITH WEAKLY SEQUENTIALLY CLOSED GRAPH.THESE RESULTS ARE FORMULATED IN TERMS OF AXIOMATIC MEASURES OF WEAK NONCOMPACTNESS. THE AUTHORS CONTINUE TO PRESENT SOME FIXED POINT THEOREMS IN A NONEMPTY CLOSED CONVEX OF ANY BANACH ALGEBRAS OR BANACH ALGEBRAS SATISFYING A SEQUENTIAL CONDITION (P) FOR THE SUM AND THE PRODUCT OF NONLINEAR WEAKLY SEQUENTIALLY CONTINUOUS OPERATORS, AND ILLUSTRATE THE THEORY BY CONSIDERING FUNCTIONAL INTEGRAL AND PARTIAL DIFFERENTIAL EQUATIONS. THE EXISTENCE OF FIXED POINTS, NONLINEAR LERAY–SCHAUDER ALTERNATIVES FOR DIFFERENT CLASSES OF NONLINEAR (WS)-COMPACT OPERATORS (WEAKLY CONDENSING, 1-SET WEAKLY CONTRACTIVE, STRICTLY QUASI-BOUNDED) DEFINED ON AN UNBOUNDED CLOSED CONVEX SUBSET OF A BANACH SPACE ARE ALSO DISCUSSED. THE AUTHORS ALSO EXAMINE THE EXISTENCE OF NONLINEAR EIGENVALUES AND EIGENVECTORS, AS WELL AS THE SURJECTIVITY OF QUASIBOUNDED OPERATORS. FINALLY, SOME APPROXIMATE FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS DEFINED ON BANACH SPACES.WEAK AND STRONG TOPOLOGIES PLAY A ROLE HERE AND BOTH BOUNDED AND UNBOUNDED REGIONS ARE CONSIDERED. THE AUTHORS EXPLICATE A METHOD DEVELOPED TO INDICATE HOW TO USE APPROXIMATE FIXED POINT THEOREMS TO PROVE THE EXISTENCE OF APPROXIMATE NASH EQUILIBRIA FOR NON-COOPERATIVE GAMES. FIXED POINT THEORY IS A POWERFUL AND FRUITFUL TOOL IN MODERN MATHEMATICS AND MAY BE CONSIDERED AS A CORE SUBJECT IN NONLINEAR ANALYSIS. IN THE LAST 50 YEARS, FIXED POINT THEORY HAS BEEN A FLOURISHING AREA OF RESEARCH. AS SUCH, THE MONOGRAPH BEGINS WITH AN OVERVIEW OF THESE DEVELOPMENTS BEFORE GRAVITATING TOWARDS TOPICS SELECTED TO REFLECT THE PARTICULAR INTERESTS OF THE AUTHORS. DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author Ben Amar, Afif
O'Regan, Donal 1959-
author_GND (DE-588)138809879
author_facet Ben Amar, Afif
O'Regan, Donal 1959-
author_role aut
aut
author_sort Ben Amar, Afif
author_variant a a b aa aab
d o do
building Verbundindex
bvnumber BV043579759
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (ZDB-2-SMA)978-3-319-31948-3
(OCoLC)951017594
(DE-599)BVBBV043579759
dewey-full 515.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
dewey-search 515.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-31948-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02911nam a2200577zc 4500</leader><controlfield tag="001">BV043579759</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160601s2016 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319319483</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-31948-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-31948-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-3-319-31948-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951017594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043579759</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ben Amar, Afif</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological fixed point theory for singlevalued and multivalued mappings and applications</subfield><subfield code="c">Afif Ben Amar, Donal O'Regan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cham]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 194 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Regan, Donal</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138809879</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-31947-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028994431&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028994431&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028994431</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-31948-3</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043579759
illustrated Not Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9783319319483
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028994431
oclc_num 951017594
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-739
DE-634
DE-898
DE-BY-UBR
DE-861
DE-703
DE-824
DE-83
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-739
DE-634
DE-898
DE-BY-UBR
DE-861
DE-703
DE-824
DE-83
physical 1 Online-Ressource (X, 194 Seiten)
psigel ZDB-2-SMA
ZDB-2-SMA_2016
publishDate 2016
publishDateSearch 2016
publishDateSort 2016
publisher Springer
record_format marc
spellingShingle Ben Amar, Afif
O'Regan, Donal 1959-
Topological fixed point theory for singlevalued and multivalued mappings and applications
Mathematics
Approximation theory
Functional analysis
Functional Analysis
Approximations and Expansions
Mathematik
title Topological fixed point theory for singlevalued and multivalued mappings and applications
title_auth Topological fixed point theory for singlevalued and multivalued mappings and applications
title_exact_search Topological fixed point theory for singlevalued and multivalued mappings and applications
title_full Topological fixed point theory for singlevalued and multivalued mappings and applications Afif Ben Amar, Donal O'Regan
title_fullStr Topological fixed point theory for singlevalued and multivalued mappings and applications Afif Ben Amar, Donal O'Regan
title_full_unstemmed Topological fixed point theory for singlevalued and multivalued mappings and applications Afif Ben Amar, Donal O'Regan
title_short Topological fixed point theory for singlevalued and multivalued mappings and applications
title_sort topological fixed point theory for singlevalued and multivalued mappings and applications
topic Mathematics
Approximation theory
Functional analysis
Functional Analysis
Approximations and Expansions
Mathematik
topic_facet Mathematics
Approximation theory
Functional analysis
Functional Analysis
Approximations and Expansions
Mathematik
url https://doi.org/10.1007/978-3-319-31948-3
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994431&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028994431&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT benamarafif topologicalfixedpointtheoryforsinglevaluedandmultivaluedmappingsandapplications
AT oregandonal topologicalfixedpointtheoryforsinglevaluedandmultivaluedmappingsandapplications