Stochastic partial differential equations: an introduction

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Wei (VerfasserIn), Röckner, Michael 1956- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cham ; Heidelberg ; New York ; Dordrecht ; London Springer [2015]
Schriftenreihe:Universitext
Schlagworte:
Online-Zugang:DE-634
DE-861
DE-91
DE-19
DE-703
DE-20
DE-739
URL des Erstveröffentlichers
Inhaltsverzeichnis
Abstract
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043209737
003 DE-604
005 20201203
007 cr|uuu---uuuuu
008 151215s2015 xx o|||| 00||| eng d
020 |a 9783319223544  |c Online  |9 978-3-319-22354-4 
024 7 |a 10.1007/978-3-319-22354-4  |2 doi 
035 |a (OCoLC)929995900 
035 |a (DE-599)BVBBV043209737 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-703  |a DE-20  |a DE-739  |a DE-634  |a DE-861  |a DE-83 
082 0 |a 519.2  |2 23 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Liu, Wei  |0 (DE-588)1081959584  |4 aut 
245 1 0 |a Stochastic partial differential equations: an introduction  |c Wei Liu, Michael Röckner 
264 1 |a Cham ; Heidelberg ; New York ; Dordrecht ; London  |b Springer  |c [2015] 
264 4 |c © 2015 
300 |a 1 Online Ressource (VI, 266 Seiten) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Universitext  |x 0172-5939 
650 4 |a Mathematics 
650 4 |a Differential equations 
650 4 |a Partial differential equations 
650 4 |a Game theory 
650 4 |a Mathematical physics 
650 4 |a Probabilities 
650 4 |a Probability Theory and Stochastic Processes 
650 4 |a Partial Differential Equations 
650 4 |a Ordinary Differential Equations 
650 4 |a Mathematical Applications in the Physical Sciences 
650 4 |a Game Theory, Economics, Social and Behav. Sciences 
650 4 |a Mathematik 
650 4 |a Mathematische Physik 
650 0 7 |a Stochastische partielle Differentialgleichung  |0 (DE-588)4135969-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4151278-9  |a Einführung  |2 gnd-content 
689 0 0 |a Stochastische partielle Differentialgleichung  |0 (DE-588)4135969-0  |D s 
689 0 |5 DE-604 
700 1 |a Röckner, Michael  |d 1956-  |0 (DE-588)121250199  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-22353-7 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-3-319-22353-7 
856 4 0 |u https://doi.org/10.1007/978-3-319-22354-4  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632897&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-SMA 
940 1 |q UBY_PDA_SMA 
940 1 |q ZDB-2-SMA_2015 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028632897 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-22354-4  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2160168
_version_ 1820851954759237632
adam_text STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: AN INTRODUCTION / LIU, WEI : 2015 TABLE OF CONTENTS / INHALTSVERZEICHNIS MOTIVATION, AIMS AND EXAMPLES STOCHASTIC INTEGRAL IN HILBERT SPACES SDES IN FINITE DIMENSIONS SDES IN INFINITE DIMENSIONS AND APPLICATIONS TO SPDES SPDES WITH LOCALLY MONOTONE COEFFICIENTS MILD SOLUTIONS DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: AN INTRODUCTION / LIU, WEI : 2015 ABSTRACT / INHALTSTEXT THIS BOOK PROVIDES AN INTRODUCTION TO THE THEORY OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS (SPDES) OF EVOLUTIONARY TYPE. SPDES ARE ONE OF THE MAIN RESEARCH DIRECTIONS IN PROBABILITY THEORY WITH SEVERAL WIDE RANGING APPLICATIONS. MANY TYPES OF DYNAMICS WITH STOCHASTIC INFLUENCE IN NATURE OR MAN-MADE COMPLEX SYSTEMS CAN BE MODELLED BY SUCH EQUATIONS. THE THEORY OF SPDES IS BASED BOTH ON THE THEORY OF DETERMINISTIC PARTIAL DIFFERENTIAL EQUATIONS, AS WELL AS ON MODERN STOCHASTIC ANALYSIS. WHILST THIS VOLUME MAINLY FOLLOWS THE ‘VARIATIONAL APPROACH’, IT ALSO CONTAINS A SHORT ACCOUNT ON THE ‘SEMIGROUP (OR MILD SOLUTION) APPROACH’. IN PARTICULAR, THE VOLUME CONTAINS A COMPLETE PRESENTATION OF THE MAIN EXISTENCE AND UNIQUENESS RESULTS IN THE CASE OF LOCALLY MONOTONE COEFFICIENTS. VARIOUS TYPES OF GENERALIZED COERCIVITY CONDITIONS ARE SHOWN TO GUARANTEE NON-EXPLOSION, BUT ALSO A SYSTEMATIC APPROACH TO TREAT SPDES WITH EXPLOSION IN FINITE TIME IS DEVELOPED.IT IS, SO FAR, THE ONLY BOOK WHERE THE LATTER AND THE ‘LOCALLY MONOTONE CASE’ IS PRESENTED IN A DETAILED AND COMPLETE WAY FOR SPDES. THE EXTENSION TO THIS MORE GENERAL FRAMEWORK FOR SPDES, FOR EXAMPLE, IN COMPARISON TO THE WELL-KNOWN CASE OF GLOBALLY MONOTONE COEFFICIENTS, SUBSTANTIALLY WIDENS THE APPLICABILITY OF THE RESULTS. IN ADDITION, IT LEADS TO A UNIFIED APPROACH AND TO SIMPLIFIED PROOFS IN MANY CLASSICAL EXAMPLES. THESE INCLUDE A LARGE NUMBER OF SPDES NOT COVERED BY THE ‘GLOBALLY MONOTONE CASE’, SUCH AS, FOR EXA MPLE, STOCHASTIC BURGERS OR STOCHASTIC 2D AND 3D NAVIER-STOKES EQUATIONS, STOCHASTIC CAHN-HILLIARD EQUATIONS AND STOCHASTIC SURFACE GROWTH MODELS. TO KEEP THE BOOK SELF-CONTAINED AND PREREQUISITES LOW, NECESSARY RESULTS ABOUT SDES IN FINITE DIMENSIONS ARE ALSO INCLUDED WITH COMPLETE PROOFS AS WELL AS A CHAPTER ON STOCHASTIC INTEGRATION ON HILBERT SPACES.FURTHER FUNDAMENTALS (FOR EXAMPLE, A DETAILED ACCOUNT ON THE YAMADA-WATANABE THEOREM IN INFINITE DIMENSIONS) USED IN THE BOOK HAVE ADDED PROOFS IN THE APPENDIX. THE BOOK CAN BE USED AS A TEXTBOOK FOR A ONE-YEAR GRADUATE COURSE DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author Liu, Wei
Röckner, Michael 1956-
author_GND (DE-588)1081959584
(DE-588)121250199
author_facet Liu, Wei
Röckner, Michael 1956-
author_role aut
aut
author_sort Liu, Wei
author_variant w l wl
m r mr
building Verbundindex
bvnumber BV043209737
classification_rvk SK 820
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (OCoLC)929995900
(DE-599)BVBBV043209737
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-22354-4
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03463nam a2200721zc 4500</leader><controlfield tag="001">BV043209737</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201203 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151215s2015 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319223544</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-22354-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-22354-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)929995900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043209737</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="0">(DE-588)1081959584</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic partial differential equations: an introduction</subfield><subfield code="c">Wei Liu, Michael Röckner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham ; Heidelberg ; New York ; Dordrecht ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (VI, 266 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Applications in the Physical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game Theory, Economics, Social and Behav. Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Röckner, Michael</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)121250199</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-22353-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-22353-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028632897&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028632897&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028632897</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-22354-4</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre (DE-588)4151278-9 Einführung gnd-content
genre_facet Einführung
id DE-604.BV043209737
illustrated Not Illustrated
indexdate 2024-12-24T04:48:32Z
institution BVB
isbn 9783319223544
issn 0172-5939
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028632897
oclc_num 929995900
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
physical 1 Online Ressource (VI, 266 Seiten)
psigel ZDB-2-SMA
UBY_PDA_SMA
ZDB-2-SMA_2015
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Springer
record_format marc
series2 Universitext
spellingShingle Liu, Wei
Röckner, Michael 1956-
Stochastic partial differential equations: an introduction
Mathematics
Differential equations
Partial differential equations
Game theory
Mathematical physics
Probabilities
Probability Theory and Stochastic Processes
Partial Differential Equations
Ordinary Differential Equations
Mathematical Applications in the Physical Sciences
Game Theory, Economics, Social and Behav. Sciences
Mathematik
Mathematische Physik
Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd
subject_GND (DE-588)4135969-0
(DE-588)4151278-9
title Stochastic partial differential equations: an introduction
title_auth Stochastic partial differential equations: an introduction
title_exact_search Stochastic partial differential equations: an introduction
title_full Stochastic partial differential equations: an introduction Wei Liu, Michael Röckner
title_fullStr Stochastic partial differential equations: an introduction Wei Liu, Michael Röckner
title_full_unstemmed Stochastic partial differential equations: an introduction Wei Liu, Michael Röckner
title_short Stochastic partial differential equations: an introduction
title_sort stochastic partial differential equations an introduction
topic Mathematics
Differential equations
Partial differential equations
Game theory
Mathematical physics
Probabilities
Probability Theory and Stochastic Processes
Partial Differential Equations
Ordinary Differential Equations
Mathematical Applications in the Physical Sciences
Game Theory, Economics, Social and Behav. Sciences
Mathematik
Mathematische Physik
Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd
topic_facet Mathematics
Differential equations
Partial differential equations
Game theory
Mathematical physics
Probabilities
Probability Theory and Stochastic Processes
Partial Differential Equations
Ordinary Differential Equations
Mathematical Applications in the Physical Sciences
Game Theory, Economics, Social and Behav. Sciences
Mathematik
Mathematische Physik
Stochastische partielle Differentialgleichung
Einführung
url https://doi.org/10.1007/978-3-319-22354-4
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632897&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632897&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT liuwei stochasticpartialdifferentialequationsanintroduction
AT rocknermichael stochasticpartialdifferentialequationsanintroduction