Group theory birdtracks, Lie's, and exceptional groups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cvitanović, Predrag (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press ©2008
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043161114
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2008 xx o|||| 00||| eng d
020 |a 0691118361  |9 0-691-11836-1 
020 |a 1400837677  |c electronic bk.  |9 1-4008-3767-7 
020 |a 9780691118369  |9 978-0-691-11836-9 
020 |a 9781400837670  |c electronic bk.  |9 978-1-4008-3767-0 
035 |a (OCoLC)705945735 
035 |a (DE-599)BVBBV043161114 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 512/.2  |2 22 
100 1 |a Cvitanović, Predrag  |e Verfasser  |4 aut 
245 1 0 |a Group theory  |b birdtracks, Lie's, and exceptional groups  |c Predrag Cvitanović 
264 1 |a Princeton, N.J.  |b Princeton University Press  |c ©2008 
300 |a 1 Online-Ressource (xii, 273 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references (pages 251-268) and index 
500 |a A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic 
500 |a If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt 
650 4 |a Mathematics 
650 7 |a MATHEMATICS / Group Theory  |2 bisacsh 
650 7 |a Group theory  |2 fast 
650 7 |a Halbeinfache Lie-Algebra  |2 swd 
650 7 |a Gruppentheorie  |2 swd 
650 7 |a Lie-Gruppe  |2 swd 
650 4 |a Mathematik 
650 4 |a Group theory 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=355983  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028585305 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=355983  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=355983  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295533171212288
any_adam_object
author Cvitanović, Predrag
author_facet Cvitanović, Predrag
author_role aut
author_sort Cvitanović, Predrag
author_variant p c pc
building Verbundindex
bvnumber BV043161114
collection ZDB-4-EBA
ctrlnum (OCoLC)705945735
(DE-599)BVBBV043161114
dewey-full 512/.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.2
dewey-search 512/.2
dewey-sort 3512 12
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03229nam a2200481zc 4500</leader><controlfield tag="001">BV043161114</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691118361</subfield><subfield code="9">0-691-11836-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837677</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3767-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691118369</subfield><subfield code="9">978-0-691-11836-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837670</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3767-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705945735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043161114</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cvitanović, Predrag</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theory</subfield><subfield code="b">birdtracks, Lie's, and exceptional groups</subfield><subfield code="c">Predrag Cvitanović</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 273 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 251-268) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=355983</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028585305</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=355983</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=355983</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043161114
illustrated Not Illustrated
indexdate 2024-12-24T04:43:43Z
institution BVB
isbn 0691118361
1400837677
9780691118369
9781400837670
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028585305
oclc_num 705945735
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xii, 273 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Princeton University Press
record_format marc
spelling Cvitanović, Predrag Verfasser aut
Group theory birdtracks, Lie's, and exceptional groups Predrag Cvitanović
Princeton, N.J. Princeton University Press ©2008
1 Online-Ressource (xii, 273 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references (pages 251-268) and index
A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic
If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt
Mathematics
MATHEMATICS / Group Theory bisacsh
Group theory fast
Halbeinfache Lie-Algebra swd
Gruppentheorie swd
Lie-Gruppe swd
Mathematik
Group theory
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=355983 Aggregator Volltext
spellingShingle Cvitanović, Predrag
Group theory birdtracks, Lie's, and exceptional groups
Mathematics
MATHEMATICS / Group Theory bisacsh
Group theory fast
Halbeinfache Lie-Algebra swd
Gruppentheorie swd
Lie-Gruppe swd
Mathematik
Group theory
title Group theory birdtracks, Lie's, and exceptional groups
title_auth Group theory birdtracks, Lie's, and exceptional groups
title_exact_search Group theory birdtracks, Lie's, and exceptional groups
title_full Group theory birdtracks, Lie's, and exceptional groups Predrag Cvitanović
title_fullStr Group theory birdtracks, Lie's, and exceptional groups Predrag Cvitanović
title_full_unstemmed Group theory birdtracks, Lie's, and exceptional groups Predrag Cvitanović
title_short Group theory
title_sort group theory birdtracks lie s and exceptional groups
title_sub birdtracks, Lie's, and exceptional groups
topic Mathematics
MATHEMATICS / Group Theory bisacsh
Group theory fast
Halbeinfache Lie-Algebra swd
Gruppentheorie swd
Lie-Gruppe swd
Mathematik
Group theory
topic_facet Mathematics
MATHEMATICS / Group Theory
Group theory
Halbeinfache Lie-Algebra
Gruppentheorie
Lie-Gruppe
Mathematik
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=355983
work_keys_str_mv AT cvitanovicpredrag grouptheorybirdtracksliesandexceptionalgroups