Bifurcation and chaos in nonsmooth mechanical systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Awrejcewicz, J., (Jan) (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific 2003
Schriftenreihe:World Scientific series on nonlinear science v. 45
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043157948
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2003 xx o|||| 00||| eng d
020 |a 9789812564801  |9 978-981-256-480-1 
020 |a 9812564802  |9 981-256-480-2 
035 |a (OCoLC)61048703 
035 |a (DE-599)BVBBV043157948 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 515/.35  |2 22 
100 1 |a Awrejcewicz, J., (Jan)  |e Verfasser  |4 aut 
245 1 0 |a Bifurcation and chaos in nonsmooth mechanical systems  |c Jan Awrejcewicz, Claude-Henri Lamarque 
264 1 |a Singapore  |b World Scientific  |c 2003 
300 |a 1 Online-Ressource (xvii, 543 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a World Scientific series on nonlinear science  |v v. 45 
500 |a Includes bibliographical references (pages 507-530) and index 
500 |a 1. Introduction to discontinuous ODEs. 1.1. Introduction. 1.2. Filippov's theory. 1.3. Aizerman's theory. 1.4. Examples. 1.5. Boundary value problem -- 2. Mathematical background for multivalued formulations. 2.1. Origin of nonlinearities. 2.2. Smooth and nonsmooth nonlinearities. 2.3. Examples and dynamical equilibria. 2.4. Existence and uniqueness. 2.5. Stochastic frame -- 3. Numerical schemes and analytical methods. 3.1. Numerical schemes. 3.2. Analytical methods -- 4. Properties of numerical schemes. 4.1. Dynamics of systems with friction or elastoplastic terms. 4.2. Systems with impacts. 4.3. Conclusion -- 5. Bifurcations of a particular van der Pol-Duffing oscillator. 5.1. The analysed system and the averaged equations. 5.2. "0" type bifurcations. 5.3. Complex bifurcations. 5.4. Observations of strange attractors using numerical simulations -- 6. Stick-slip oscillator with two degrees of freedom. 6.1. Introduction. 6.2. Disc -- flexible arm oscillator. 6.3. Two horizontally situated masses -- 7. Piecewise linear approximations. 7.1. Introduction. 7.2. Exact and approximated models. 7.3. Approximation and global dynamic behavior. 7.4. Numerical results. 7.5. Conclusion -- 8. Chua's circuit with discontinuities. 8.1. Introduction. 8.2. Mechanical realizations of Chua's circuit. 8.3. Generalized double scroll Chua's circuit -- 9. Mechanical system with impacts and modal approaches. 9.1. Introduction. 9.2. Single degree of freedom system. 9.3. Two degrees of freedom systems. 9.4. Conclusion -- 10. One DOF mechanical system with friction. 10.1. Introduction. 10.2. Modelling the pendulum with friction. 10.3. Numerical results. 10.4. The Melnikov analysis. 10.5. Conclusion 
500 |a 11. Modelling the dynamical behaviour of elasto-plastic systems. 11.1. Rheological systems with "friction" -- 12. A mechanical system with 7 DOF. 12.1. Mathematical model. 12.2. Numerical results and comments for finite k3 -- 13. Stability of singular periodic motions in single degree of freedom vibro-impact oscillators and grazing bifurcations. 13.1. Introduction. 13.2. Mechanical system and change of coordinates. 13.3. Local expansion of the Poincaré map. 13.4. Stability of the nondifferentiable fixed point. 13.5. Applications. 13.6. Conclusion -- 14. Triple pendulum with impacts. 14.1. Introduction. 14.2. Investigated pendulum and governing equations (without impacts). 14.3. Introduction of the obstacles. 14.4. Calculation of the fundamental solution matrices for dynamical systems with impacts. 14.5. Simplification of the system. 14.6. The method used for integration of the system and its accuracy. 14.7. Numerical examples. 14.8. Concluding remarks -- 15. Analytical prediction of stick-slip chaos. 15.1. Introduction. 15.2. The Melnikov's method. 15.3. Analyzed system. 15.4. Analytical results -- 16. Thermoelasticity, wear and stick-slip movements of a rotating shaft with a rigid bush. 16.1. Introduction -- 17. Control for discrete models of buildings including elastoplastic terms. 17.1. Introduction. 17.2. Reminder about Prandtl rheological model. 17.3. The studied models with n DOF. 17.4. Existence and uniqueness results. 17.5. Numerical scheme. 17.6. Control procedure. 17.7. Algorithm of control. 17.8 Numerical results for a system with 3 DOF. 17.9. Extension to nonlinear cases. 17.10. Conclusion 
500 |a This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments 
650 7 |a MATHEMATICS / Differential Equations / General  |2 bisacsh 
650 7 |a Bifurcation theory  |2 fast 
650 7 |a Chaotic behavior in systems  |2 fast 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 4 |a Bifurcation theory 
650 4 |a Chaotic behavior in systems 
650 4 |a Differential equations, Nonlinear 
650 0 7 |a Mechanisches System  |0 (DE-588)4132811-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Chaostheorie  |0 (DE-588)4009754-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Mechanisches System  |0 (DE-588)4132811-5  |D s 
689 0 1 |a Chaostheorie  |0 (DE-588)4009754-7  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Lamarque, Claude-Henri  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028582139 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295526532677632
any_adam_object
author Awrejcewicz, J., (Jan)
author_facet Awrejcewicz, J., (Jan)
author_role aut
author_sort Awrejcewicz, J., (Jan)
author_variant j j a jj jja
building Verbundindex
bvnumber BV043157948
collection ZDB-4-EBA
ctrlnum (OCoLC)61048703
(DE-599)BVBBV043157948
dewey-full 515/.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.35
dewey-search 515/.35
dewey-sort 3515 235
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06308nam a2200553zcb4500</leader><controlfield tag="001">BV043157948</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812564801</subfield><subfield code="9">978-981-256-480-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812564802</subfield><subfield code="9">981-256-480-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61048703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043157948</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Awrejcewicz, J., (Jan)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifurcation and chaos in nonsmooth mechanical systems</subfield><subfield code="c">Jan Awrejcewicz, Claude-Henri Lamarque</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 543 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Scientific series on nonlinear science</subfield><subfield code="v">v. 45</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 507-530) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction to discontinuous ODEs. 1.1. Introduction. 1.2. Filippov's theory. 1.3. Aizerman's theory. 1.4. Examples. 1.5. Boundary value problem -- 2. Mathematical background for multivalued formulations. 2.1. Origin of nonlinearities. 2.2. Smooth and nonsmooth nonlinearities. 2.3. Examples and dynamical equilibria. 2.4. Existence and uniqueness. 2.5. Stochastic frame -- 3. Numerical schemes and analytical methods. 3.1. Numerical schemes. 3.2. Analytical methods -- 4. Properties of numerical schemes. 4.1. Dynamics of systems with friction or elastoplastic terms. 4.2. Systems with impacts. 4.3. Conclusion -- 5. Bifurcations of a particular van der Pol-Duffing oscillator. 5.1. The analysed system and the averaged equations. 5.2. "0" type bifurcations. 5.3. Complex bifurcations. 5.4. Observations of strange attractors using numerical simulations -- 6. Stick-slip oscillator with two degrees of freedom. 6.1. Introduction. 6.2. Disc -- flexible arm oscillator. 6.3. Two horizontally situated masses -- 7. Piecewise linear approximations. 7.1. Introduction. 7.2. Exact and approximated models. 7.3. Approximation and global dynamic behavior. 7.4. Numerical results. 7.5. Conclusion -- 8. Chua's circuit with discontinuities. 8.1. Introduction. 8.2. Mechanical realizations of Chua's circuit. 8.3. Generalized double scroll Chua's circuit -- 9. Mechanical system with impacts and modal approaches. 9.1. Introduction. 9.2. Single degree of freedom system. 9.3. Two degrees of freedom systems. 9.4. Conclusion -- 10. One DOF mechanical system with friction. 10.1. Introduction. 10.2. Modelling the pendulum with friction. 10.3. Numerical results. 10.4. The Melnikov analysis. 10.5. Conclusion</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11. Modelling the dynamical behaviour of elasto-plastic systems. 11.1. Rheological systems with "friction" -- 12. A mechanical system with 7 DOF. 12.1. Mathematical model. 12.2. Numerical results and comments for finite k3 -- 13. Stability of singular periodic motions in single degree of freedom vibro-impact oscillators and grazing bifurcations. 13.1. Introduction. 13.2. Mechanical system and change of coordinates. 13.3. Local expansion of the Poincaré map. 13.4. Stability of the nondifferentiable fixed point. 13.5. Applications. 13.6. Conclusion -- 14. Triple pendulum with impacts. 14.1. Introduction. 14.2. Investigated pendulum and governing equations (without impacts). 14.3. Introduction of the obstacles. 14.4. Calculation of the fundamental solution matrices for dynamical systems with impacts. 14.5. Simplification of the system. 14.6. The method used for integration of the system and its accuracy. 14.7. Numerical examples. 14.8. Concluding remarks -- 15. Analytical prediction of stick-slip chaos. 15.1. Introduction. 15.2. The Melnikov's method. 15.3. Analyzed system. 15.4. Analytical results -- 16. Thermoelasticity, wear and stick-slip movements of a rotating shaft with a rigid bush. 16.1. Introduction -- 17. Control for discrete models of buildings including elastoplastic terms. 17.1. Introduction. 17.2. Reminder about Prandtl rheological model. 17.3. The studied models with n DOF. 17.4. Existence and uniqueness results. 17.5. Numerical scheme. 17.6. Control procedure. 17.7. Algorithm of control. 17.8 Numerical results for a system with 3 DOF. 17.9. Extension to nonlinear cases. 17.10. Conclusion</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Differential Equations / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bifurcation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bifurcation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamarque, Claude-Henri</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=135170</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028582139</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=135170</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=135170</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043157948
illustrated Not Illustrated
indexdate 2024-12-24T04:43:37Z
institution BVB
isbn 9789812564801
9812564802
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028582139
oclc_num 61048703
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xvii, 543 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher World Scientific
record_format marc
series2 World Scientific series on nonlinear science
spelling Awrejcewicz, J., (Jan) Verfasser aut
Bifurcation and chaos in nonsmooth mechanical systems Jan Awrejcewicz, Claude-Henri Lamarque
Singapore World Scientific 2003
1 Online-Ressource (xvii, 543 pages)
txt rdacontent
c rdamedia
cr rdacarrier
World Scientific series on nonlinear science v. 45
Includes bibliographical references (pages 507-530) and index
1. Introduction to discontinuous ODEs. 1.1. Introduction. 1.2. Filippov's theory. 1.3. Aizerman's theory. 1.4. Examples. 1.5. Boundary value problem -- 2. Mathematical background for multivalued formulations. 2.1. Origin of nonlinearities. 2.2. Smooth and nonsmooth nonlinearities. 2.3. Examples and dynamical equilibria. 2.4. Existence and uniqueness. 2.5. Stochastic frame -- 3. Numerical schemes and analytical methods. 3.1. Numerical schemes. 3.2. Analytical methods -- 4. Properties of numerical schemes. 4.1. Dynamics of systems with friction or elastoplastic terms. 4.2. Systems with impacts. 4.3. Conclusion -- 5. Bifurcations of a particular van der Pol-Duffing oscillator. 5.1. The analysed system and the averaged equations. 5.2. "0" type bifurcations. 5.3. Complex bifurcations. 5.4. Observations of strange attractors using numerical simulations -- 6. Stick-slip oscillator with two degrees of freedom. 6.1. Introduction. 6.2. Disc -- flexible arm oscillator. 6.3. Two horizontally situated masses -- 7. Piecewise linear approximations. 7.1. Introduction. 7.2. Exact and approximated models. 7.3. Approximation and global dynamic behavior. 7.4. Numerical results. 7.5. Conclusion -- 8. Chua's circuit with discontinuities. 8.1. Introduction. 8.2. Mechanical realizations of Chua's circuit. 8.3. Generalized double scroll Chua's circuit -- 9. Mechanical system with impacts and modal approaches. 9.1. Introduction. 9.2. Single degree of freedom system. 9.3. Two degrees of freedom systems. 9.4. Conclusion -- 10. One DOF mechanical system with friction. 10.1. Introduction. 10.2. Modelling the pendulum with friction. 10.3. Numerical results. 10.4. The Melnikov analysis. 10.5. Conclusion
11. Modelling the dynamical behaviour of elasto-plastic systems. 11.1. Rheological systems with "friction" -- 12. A mechanical system with 7 DOF. 12.1. Mathematical model. 12.2. Numerical results and comments for finite k3 -- 13. Stability of singular periodic motions in single degree of freedom vibro-impact oscillators and grazing bifurcations. 13.1. Introduction. 13.2. Mechanical system and change of coordinates. 13.3. Local expansion of the Poincaré map. 13.4. Stability of the nondifferentiable fixed point. 13.5. Applications. 13.6. Conclusion -- 14. Triple pendulum with impacts. 14.1. Introduction. 14.2. Investigated pendulum and governing equations (without impacts). 14.3. Introduction of the obstacles. 14.4. Calculation of the fundamental solution matrices for dynamical systems with impacts. 14.5. Simplification of the system. 14.6. The method used for integration of the system and its accuracy. 14.7. Numerical examples. 14.8. Concluding remarks -- 15. Analytical prediction of stick-slip chaos. 15.1. Introduction. 15.2. The Melnikov's method. 15.3. Analyzed system. 15.4. Analytical results -- 16. Thermoelasticity, wear and stick-slip movements of a rotating shaft with a rigid bush. 16.1. Introduction -- 17. Control for discrete models of buildings including elastoplastic terms. 17.1. Introduction. 17.2. Reminder about Prandtl rheological model. 17.3. The studied models with n DOF. 17.4. Existence and uniqueness results. 17.5. Numerical scheme. 17.6. Control procedure. 17.7. Algorithm of control. 17.8 Numerical results for a system with 3 DOF. 17.9. Extension to nonlinear cases. 17.10. Conclusion
This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments
MATHEMATICS / Differential Equations / General bisacsh
Bifurcation theory fast
Chaotic behavior in systems fast
Differential equations, Nonlinear fast
Bifurcation theory
Chaotic behavior in systems
Differential equations, Nonlinear
Mechanisches System (DE-588)4132811-5 gnd rswk-swf
Chaostheorie (DE-588)4009754-7 gnd rswk-swf
Mechanisches System (DE-588)4132811-5 s
Chaostheorie (DE-588)4009754-7 s
1\p DE-604
Lamarque, Claude-Henri Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Awrejcewicz, J., (Jan)
Bifurcation and chaos in nonsmooth mechanical systems
MATHEMATICS / Differential Equations / General bisacsh
Bifurcation theory fast
Chaotic behavior in systems fast
Differential equations, Nonlinear fast
Bifurcation theory
Chaotic behavior in systems
Differential equations, Nonlinear
Mechanisches System (DE-588)4132811-5 gnd
Chaostheorie (DE-588)4009754-7 gnd
subject_GND (DE-588)4132811-5
(DE-588)4009754-7
title Bifurcation and chaos in nonsmooth mechanical systems
title_auth Bifurcation and chaos in nonsmooth mechanical systems
title_exact_search Bifurcation and chaos in nonsmooth mechanical systems
title_full Bifurcation and chaos in nonsmooth mechanical systems Jan Awrejcewicz, Claude-Henri Lamarque
title_fullStr Bifurcation and chaos in nonsmooth mechanical systems Jan Awrejcewicz, Claude-Henri Lamarque
title_full_unstemmed Bifurcation and chaos in nonsmooth mechanical systems Jan Awrejcewicz, Claude-Henri Lamarque
title_short Bifurcation and chaos in nonsmooth mechanical systems
title_sort bifurcation and chaos in nonsmooth mechanical systems
topic MATHEMATICS / Differential Equations / General bisacsh
Bifurcation theory fast
Chaotic behavior in systems fast
Differential equations, Nonlinear fast
Bifurcation theory
Chaotic behavior in systems
Differential equations, Nonlinear
Mechanisches System (DE-588)4132811-5 gnd
Chaostheorie (DE-588)4009754-7 gnd
topic_facet MATHEMATICS / Differential Equations / General
Bifurcation theory
Chaotic behavior in systems
Differential equations, Nonlinear
Mechanisches System
Chaostheorie
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=135170
work_keys_str_mv AT awrejcewiczjjan bifurcationandchaosinnonsmoothmechanicalsystems
AT lamarqueclaudehenri bifurcationandchaosinnonsmoothmechanicalsystems