Euler Systems. (AM-147)

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rubin, Karl (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton Princeton University Press 2014
Schriftenreihe:Annals of mathematics studies
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043155769
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2014 xx o|||| 00||| eng d
020 |a 1400865204  |9 1-4008-6520-4 
020 |a 9781400865208  |9 978-1-4008-6520-8 
035 |a (OCoLC)891400001 
035 |a (DE-599)BVBBV043155769 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 512.74 
100 1 |a Rubin, Karl  |e Verfasser  |4 aut 
245 1 0 |a Euler Systems. (AM-147) 
264 1 |a Princeton  |b Princeton University Press  |c 2014 
300 |a 1 Online-Ressource (241 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies 
500 |a One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic 
650 4 |a Algebraic number theory 
650 4 |a p-adic numbers 
650 7 |a MATHEMATICS / Algebra / Intermediate  |2 bisacsh 
650 7 |a MATHEMATICS / Number Theory  |2 bisacsh 
650 7 |a Algebraic number theory  |2 fast 
650 7 |a p-adic numbers  |2 fast 
650 4 |a Algebraic number theory 
650 4 |a p-adic numbers 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818441  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028579960 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818441  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818441  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295522210447360
any_adam_object
author Rubin, Karl
author_facet Rubin, Karl
author_role aut
author_sort Rubin, Karl
author_variant k r kr
building Verbundindex
bvnumber BV043155769
collection ZDB-4-EBA
ctrlnum (OCoLC)891400001
(DE-599)BVBBV043155769
dewey-full 512.74
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.74
dewey-search 512.74
dewey-sort 3512.74
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02262nam a2200445zc 4500</leader><controlfield tag="001">BV043155769</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400865204</subfield><subfield code="9">1-4008-6520-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400865208</subfield><subfield code="9">978-1-4008-6520-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891400001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043155769</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.74</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubin, Karl</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euler Systems. (AM-147)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (241 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">p-adic numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">p-adic numbers</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=818441</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028579960</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=818441</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=818441</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043155769
illustrated Not Illustrated
indexdate 2024-12-24T04:43:33Z
institution BVB
isbn 1400865204
9781400865208
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028579960
oclc_num 891400001
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (241 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Princeton University Press
record_format marc
series2 Annals of mathematics studies
spelling Rubin, Karl Verfasser aut
Euler Systems. (AM-147)
Princeton Princeton University Press 2014
1 Online-Ressource (241 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Annals of mathematics studies
One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic
Algebraic number theory
p-adic numbers
MATHEMATICS / Algebra / Intermediate bisacsh
MATHEMATICS / Number Theory bisacsh
Algebraic number theory fast
p-adic numbers fast
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818441 Aggregator Volltext
spellingShingle Rubin, Karl
Euler Systems. (AM-147)
Algebraic number theory
p-adic numbers
MATHEMATICS / Algebra / Intermediate bisacsh
MATHEMATICS / Number Theory bisacsh
Algebraic number theory fast
p-adic numbers fast
title Euler Systems. (AM-147)
title_auth Euler Systems. (AM-147)
title_exact_search Euler Systems. (AM-147)
title_full Euler Systems. (AM-147)
title_fullStr Euler Systems. (AM-147)
title_full_unstemmed Euler Systems. (AM-147)
title_short Euler Systems. (AM-147)
title_sort euler systems am 147
topic Algebraic number theory
p-adic numbers
MATHEMATICS / Algebra / Intermediate bisacsh
MATHEMATICS / Number Theory bisacsh
Algebraic number theory fast
p-adic numbers fast
topic_facet Algebraic number theory
p-adic numbers
MATHEMATICS / Algebra / Intermediate
MATHEMATICS / Number Theory
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=818441
work_keys_str_mv AT rubinkarl eulersystemsam147