Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ivanov, Stefan P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific c2011
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043150874
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2011 xx o|||| 00||| eng d
020 |a 9789814295703  |9 978-981-4295-70-3 
020 |a 9789814295710  |c electronic bk.  |9 978-981-4295-71-0 
020 |a 9814295701  |9 981-4295-70-1 
020 |a 981429571X  |c electronic bk.  |9 981-4295-71-X 
035 |a (OCoLC)754765357 
035 |a (DE-599)BVBBV043150874 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 516.36  |2 22 
100 1 |a Ivanov, Stefan P.  |e Verfasser  |4 aut 
245 1 0 |a Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem  |c Stefan P. Ivanov, Dimiter N. Vassilev 
264 1 |a Singapore  |b World Scientific  |c c2011 
300 |a 1 Online-Ressource (xvii, 219 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references (p. 207-216) and index 
500 |a Machine generated contents note - 1 - Variational problems related to Sobolev inequalities on Carnot groups -- - 1.1 - Introduction -- - 1.2 - Carnot groups -- - 1.3 - Sobolev spaces and their weak topologies -- - 1.4 - The best constant in the Folland-Stein inequality -- - 1.5 - The best constant in the presence of symmetries -- - 1.6 - Global regularity of weak solutions -- - 1.6.1 - Global boundedness of weak solutions -- - 1.6.2 - The Yamabe equation -- Cinfinity regularity of weak solutions -- - 2 - Groups of Heisenberg and Iwasawa types explicit solutions to the Yamabe equation -- - 2.1 - Introduction -- - 2.2 - Groups of Heisenberg and Iwasawa types -- - 2.3 - The Cayley transform, inversion and Kelvin transform -- - 2.3.1 - The Cayley transform -- - 2.3.2 - Inversion on groups of Heisenberg type -- - 2.3.3 - The Kelvin transform -- - 2.4 - Explicit entire solutions of the Yamabe equation on groups of Heisenberg type -- - 3 - Symmetries of solutions on groups of Iwasawa type -- - 3.1 - Intoduction -- - 3.2 - The Hopf Lemma 
500 |a 3.3 - The partially symmetric solutions have cylindrical symmetry -- - 3.4 - Determination of the cylindrically symmetric solutions of the Yamabe equation -- - 3.5 - Solution of the partially symmetric Yamabe problem -- - 3.6 - Applications. Euclidean Hardy-Sobolev inequalities -- - 3.6.1 - A non-linear equation in Rn related to the Yamabe equation on groups of Heisenberg type -- - 3.6.2 - The best constant and extremals of the Hardy-Sobolev inequality -- - 4 - Quaternionic contact manifolds -- Connection, curvature and qc-Einstein structures -- - 4.1 - Introduction -- - 4.2 - Quaternionic contact structures and the Biquard connection -- - 4.3 - The curvature of the Biquard connection -- - 4.3.1 - The first Bianchi identity and Ricci tensors -- - 4.3.2 - Local structure equations of qc manifolds -- - 4.3.3 - The curvature tensor -- - 4.3.4 - The flat model -- The qc Heisenberg group -- - 4.4 - qc-Einstein quaternionic contact structures -- - 4.4.1 - Examples of qc-Einstein structures -- - 4.4.2 - Cones over a quaternionic contact structure -- - 5 - Quaternionic contact conformal curvature tensor 
500 |a 5.1 - Introduction -- - 5.2 - Quaternionic contact conformal transformations -- - 5.2.1 - The quaternionic Cayley transform -- - 5.3 - qc conformal curvature -- - 6 - The quaternionic contact Yamabe problem and the Yamabe constant of the qc spheres -- - 6.1 - Introduction -- - 6.2 - Some background -- - 6.2.1 - The qc normal frame -- - 6.2.2 - Horizontal divergence theorem -- - 6.2.3 - Conformal transformations of the quaternionic Heisenberg group preserving the vanishing of the torsion -- - 6.3 - Constant qc scalar curvature and the divergence formula -- - 6.4 - Divergence formulas -- - 6.5 - The divergence theorem in dimension seven -- - 6.6 - The qc Yamabe problem on the qc sphere and quaternionic Heisenberg group in dimension seven -- - 6.7 - The qc Yamabe constant on the qc sphere and the best constant in the Folland-Stein embedding on the quaternionic Heisenberg group -- - 7 - CR manifolds -- Cartan and Chern-Moser tensor and theorem -- - 7.1 - Introduction -- - 7.2 - CR-manifolds and Tanaka-Webster connection -- - 7.3 - The Cartan-Chern-Moser theorem -- - 7.3.1 - The three dimensional case 
500 |a The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well 
650 7 |a MATHEMATICS / Geometry / Differential  |2 bisacsh 
650 4 |a Geometry, Differential 
650 4 |a Contact manifolds 
650 4 |a Group theory 
700 1 |a Vassilev, Dimiter N.  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028575065 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295511534895104
any_adam_object
author Ivanov, Stefan P.
author_facet Ivanov, Stefan P.
author_role aut
author_sort Ivanov, Stefan P.
author_variant s p i sp spi
building Verbundindex
bvnumber BV043150874
collection ZDB-4-EBA
ctrlnum (OCoLC)754765357
(DE-599)BVBBV043150874
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06231nam a2200469zc 4500</leader><controlfield tag="001">BV043150874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814295703</subfield><subfield code="9">978-981-4295-70-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814295710</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4295-71-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814295701</subfield><subfield code="9">981-4295-70-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981429571X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4295-71-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)754765357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043150874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanov, Stefan P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem</subfield><subfield code="c">Stefan P. Ivanov, Dimiter N. Vassilev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 219 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 207-216) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Machine generated contents note - 1 - Variational problems related to Sobolev inequalities on Carnot groups -- - 1.1 - Introduction -- - 1.2 - Carnot groups -- - 1.3 - Sobolev spaces and their weak topologies -- - 1.4 - The best constant in the Folland-Stein inequality -- - 1.5 - The best constant in the presence of symmetries -- - 1.6 - Global regularity of weak solutions -- - 1.6.1 - Global boundedness of weak solutions -- - 1.6.2 - The Yamabe equation -- Cinfinity regularity of weak solutions -- - 2 - Groups of Heisenberg and Iwasawa types explicit solutions to the Yamabe equation -- - 2.1 - Introduction -- - 2.2 - Groups of Heisenberg and Iwasawa types -- - 2.3 - The Cayley transform, inversion and Kelvin transform -- - 2.3.1 - The Cayley transform -- - 2.3.2 - Inversion on groups of Heisenberg type -- - 2.3.3 - The Kelvin transform -- - 2.4 - Explicit entire solutions of the Yamabe equation on groups of Heisenberg type -- - 3 - Symmetries of solutions on groups of Iwasawa type -- - 3.1 - Intoduction -- - 3.2 - The Hopf Lemma</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.3 - The partially symmetric solutions have cylindrical symmetry -- - 3.4 - Determination of the cylindrically symmetric solutions of the Yamabe equation -- - 3.5 - Solution of the partially symmetric Yamabe problem -- - 3.6 - Applications. Euclidean Hardy-Sobolev inequalities -- - 3.6.1 - A non-linear equation in Rn related to the Yamabe equation on groups of Heisenberg type -- - 3.6.2 - The best constant and extremals of the Hardy-Sobolev inequality -- - 4 - Quaternionic contact manifolds -- Connection, curvature and qc-Einstein structures -- - 4.1 - Introduction -- - 4.2 - Quaternionic contact structures and the Biquard connection -- - 4.3 - The curvature of the Biquard connection -- - 4.3.1 - The first Bianchi identity and Ricci tensors -- - 4.3.2 - Local structure equations of qc manifolds -- - 4.3.3 - The curvature tensor -- - 4.3.4 - The flat model -- The qc Heisenberg group -- - 4.4 - qc-Einstein quaternionic contact structures -- - 4.4.1 - Examples of qc-Einstein structures -- - 4.4.2 - Cones over a quaternionic contact structure -- - 5 - Quaternionic contact conformal curvature tensor</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.1 - Introduction -- - 5.2 - Quaternionic contact conformal transformations -- - 5.2.1 - The quaternionic Cayley transform -- - 5.3 - qc conformal curvature -- - 6 - The quaternionic contact Yamabe problem and the Yamabe constant of the qc spheres -- - 6.1 - Introduction -- - 6.2 - Some background -- - 6.2.1 - The qc normal frame -- - 6.2.2 - Horizontal divergence theorem -- - 6.2.3 - Conformal transformations of the quaternionic Heisenberg group preserving the vanishing of the torsion -- - 6.3 - Constant qc scalar curvature and the divergence formula -- - 6.4 - Divergence formulas -- - 6.5 - The divergence theorem in dimension seven -- - 6.6 - The qc Yamabe problem on the qc sphere and quaternionic Heisenberg group in dimension seven -- - 6.7 - The qc Yamabe constant on the qc sphere and the best constant in the Folland-Stein embedding on the quaternionic Heisenberg group -- - 7 - CR manifolds -- Cartan and Chern-Moser tensor and theorem -- - 7.1 - Introduction -- - 7.2 - CR-manifolds and Tanaka-Webster connection -- - 7.3 - The Cartan-Chern-Moser theorem -- - 7.3.1 - The three dimensional case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contact manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vassilev, Dimiter N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=389628</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028575065</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=389628</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=389628</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043150874
illustrated Not Illustrated
indexdate 2024-12-24T04:43:23Z
institution BVB
isbn 9789814295703
9789814295710
9814295701
981429571X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028575065
oclc_num 754765357
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xvii, 219 p.)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher World Scientific
record_format marc
spelling Ivanov, Stefan P. Verfasser aut
Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem Stefan P. Ivanov, Dimiter N. Vassilev
Singapore World Scientific c2011
1 Online-Ressource (xvii, 219 p.)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references (p. 207-216) and index
Machine generated contents note - 1 - Variational problems related to Sobolev inequalities on Carnot groups -- - 1.1 - Introduction -- - 1.2 - Carnot groups -- - 1.3 - Sobolev spaces and their weak topologies -- - 1.4 - The best constant in the Folland-Stein inequality -- - 1.5 - The best constant in the presence of symmetries -- - 1.6 - Global regularity of weak solutions -- - 1.6.1 - Global boundedness of weak solutions -- - 1.6.2 - The Yamabe equation -- Cinfinity regularity of weak solutions -- - 2 - Groups of Heisenberg and Iwasawa types explicit solutions to the Yamabe equation -- - 2.1 - Introduction -- - 2.2 - Groups of Heisenberg and Iwasawa types -- - 2.3 - The Cayley transform, inversion and Kelvin transform -- - 2.3.1 - The Cayley transform -- - 2.3.2 - Inversion on groups of Heisenberg type -- - 2.3.3 - The Kelvin transform -- - 2.4 - Explicit entire solutions of the Yamabe equation on groups of Heisenberg type -- - 3 - Symmetries of solutions on groups of Iwasawa type -- - 3.1 - Intoduction -- - 3.2 - The Hopf Lemma
3.3 - The partially symmetric solutions have cylindrical symmetry -- - 3.4 - Determination of the cylindrically symmetric solutions of the Yamabe equation -- - 3.5 - Solution of the partially symmetric Yamabe problem -- - 3.6 - Applications. Euclidean Hardy-Sobolev inequalities -- - 3.6.1 - A non-linear equation in Rn related to the Yamabe equation on groups of Heisenberg type -- - 3.6.2 - The best constant and extremals of the Hardy-Sobolev inequality -- - 4 - Quaternionic contact manifolds -- Connection, curvature and qc-Einstein structures -- - 4.1 - Introduction -- - 4.2 - Quaternionic contact structures and the Biquard connection -- - 4.3 - The curvature of the Biquard connection -- - 4.3.1 - The first Bianchi identity and Ricci tensors -- - 4.3.2 - Local structure equations of qc manifolds -- - 4.3.3 - The curvature tensor -- - 4.3.4 - The flat model -- The qc Heisenberg group -- - 4.4 - qc-Einstein quaternionic contact structures -- - 4.4.1 - Examples of qc-Einstein structures -- - 4.4.2 - Cones over a quaternionic contact structure -- - 5 - Quaternionic contact conformal curvature tensor
5.1 - Introduction -- - 5.2 - Quaternionic contact conformal transformations -- - 5.2.1 - The quaternionic Cayley transform -- - 5.3 - qc conformal curvature -- - 6 - The quaternionic contact Yamabe problem and the Yamabe constant of the qc spheres -- - 6.1 - Introduction -- - 6.2 - Some background -- - 6.2.1 - The qc normal frame -- - 6.2.2 - Horizontal divergence theorem -- - 6.2.3 - Conformal transformations of the quaternionic Heisenberg group preserving the vanishing of the torsion -- - 6.3 - Constant qc scalar curvature and the divergence formula -- - 6.4 - Divergence formulas -- - 6.5 - The divergence theorem in dimension seven -- - 6.6 - The qc Yamabe problem on the qc sphere and quaternionic Heisenberg group in dimension seven -- - 6.7 - The qc Yamabe constant on the qc sphere and the best constant in the Folland-Stein embedding on the quaternionic Heisenberg group -- - 7 - CR manifolds -- Cartan and Chern-Moser tensor and theorem -- - 7.1 - Introduction -- - 7.2 - CR-manifolds and Tanaka-Webster connection -- - 7.3 - The Cartan-Chern-Moser theorem -- - 7.3.1 - The three dimensional case
The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well
MATHEMATICS / Geometry / Differential bisacsh
Geometry, Differential
Contact manifolds
Group theory
Vassilev, Dimiter N. Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628 Aggregator Volltext
spellingShingle Ivanov, Stefan P.
Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
MATHEMATICS / Geometry / Differential bisacsh
Geometry, Differential
Contact manifolds
Group theory
title Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
title_auth Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
title_exact_search Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
title_full Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem Stefan P. Ivanov, Dimiter N. Vassilev
title_fullStr Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem Stefan P. Ivanov, Dimiter N. Vassilev
title_full_unstemmed Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem Stefan P. Ivanov, Dimiter N. Vassilev
title_short Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
title_sort extremals for the sobolev inequality and the quaternionic contact yamabe problem
topic MATHEMATICS / Geometry / Differential bisacsh
Geometry, Differential
Contact manifolds
Group theory
topic_facet MATHEMATICS / Geometry / Differential
Geometry, Differential
Contact manifolds
Group theory
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628
work_keys_str_mv AT ivanovstefanp extremalsforthesobolevinequalityandthequaternioniccontactyamabeproblem
AT vassilevdimitern extremalsforthesobolevinequalityandthequaternioniccontactyamabeproblem