Linear regression analysis theory and computing

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yan, Xin (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. ©2009
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043132476
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2009 xx o|||| 00||| eng d
020 |a 1282441698  |9 1-282-44169-8 
020 |a 9781282441699  |9 978-1-282-44169-9 
020 |a 9789812834102  |9 978-981-283-410-2 
020 |a 9789812834119  |c electronic bk.  |9 978-981-283-411-9 
020 |a 9812834109  |9 981-283-410-9 
020 |a 9812834117  |c electronic bk.  |9 981-283-411-7 
035 |a (OCoLC)613658550 
035 |a (DE-599)BVBBV043132476 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 519.536  |2 22 
100 1 |a Yan, Xin  |e Verfasser  |4 aut 
245 1 0 |a Linear regression analysis  |b theory and computing  |c Xin Yan, Xiao Gang Su 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c ©2009 
300 |a 1 Online-Ressource (xix, 328 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references (pages 317-324) and index 
500 |a 1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example --  
500 |a  - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20.  
500 |a  - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression --  
500 |a  - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging 
500 |a This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields 
650 7 |a MATHEMATICS / Probability & Statistics / Regression Analysis  |2 bisacsh 
650 4 |a Regression analysis 
650 0 7 |a Regressionsanalyse  |0 (DE-588)4129903-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineare Regression  |0 (DE-588)4167709-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Lineare Regression  |0 (DE-588)4167709-2  |D s 
689 0 1 |a Regressionsanalyse  |0 (DE-588)4129903-6  |D s 
689 0 |8 2\p  |5 DE-604 
700 1 |a Su, Xiaogang  |e Sonstige  |4 oth 
710 2 |a World Scientific (Firm)  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028556667 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295473033281536
any_adam_object
author Yan, Xin
author_facet Yan, Xin
author_role aut
author_sort Yan, Xin
author_variant x y xy
building Verbundindex
bvnumber BV043132476
collection ZDB-4-EBA
ctrlnum (OCoLC)613658550
(DE-599)BVBBV043132476
dewey-full 519.536
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.536
dewey-search 519.536
dewey-sort 3519.536
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05912nam a2200589zc 4500</leader><controlfield tag="001">BV043132476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282441698</subfield><subfield code="9">1-282-44169-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282441699</subfield><subfield code="9">978-1-282-44169-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812834102</subfield><subfield code="9">978-981-283-410-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812834119</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-411-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812834109</subfield><subfield code="9">981-283-410-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812834117</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-283-411-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)613658550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043132476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.536</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yan, Xin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear regression analysis</subfield><subfield code="b">theory and computing</subfield><subfield code="c">Xin Yan, Xiao Gang Su</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 328 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 317-324) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability &amp; Statistics / Regression Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xiaogang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305216</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028556667</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305216</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305216</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre 1\p (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV043132476
illustrated Not Illustrated
indexdate 2024-12-24T04:42:46Z
institution BVB
isbn 1282441698
9781282441699
9789812834102
9789812834119
9812834109
9812834117
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028556667
oclc_num 613658550
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xix, 328 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher World Scientific Pub. Co.
record_format marc
spelling Yan, Xin Verfasser aut
Linear regression analysis theory and computing Xin Yan, Xiao Gang Su
Singapore World Scientific Pub. Co. ©2009
1 Online-Ressource (xix, 328 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references (pages 317-324) and index
1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example --
- 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20.
- Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression --
- 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging
This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields
MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh
Regression analysis
Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf
Lineare Regression (DE-588)4167709-2 gnd rswk-swf
1\p (DE-588)4123623-3 Lehrbuch gnd-content
Lineare Regression (DE-588)4167709-2 s
Regressionsanalyse (DE-588)4129903-6 s
2\p DE-604
Su, Xiaogang Sonstige oth
World Scientific (Firm) Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Yan, Xin
Linear regression analysis theory and computing
MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh
Regression analysis
Regressionsanalyse (DE-588)4129903-6 gnd
Lineare Regression (DE-588)4167709-2 gnd
subject_GND (DE-588)4129903-6
(DE-588)4167709-2
(DE-588)4123623-3
title Linear regression analysis theory and computing
title_auth Linear regression analysis theory and computing
title_exact_search Linear regression analysis theory and computing
title_full Linear regression analysis theory and computing Xin Yan, Xiao Gang Su
title_fullStr Linear regression analysis theory and computing Xin Yan, Xiao Gang Su
title_full_unstemmed Linear regression analysis theory and computing Xin Yan, Xiao Gang Su
title_short Linear regression analysis
title_sort linear regression analysis theory and computing
title_sub theory and computing
topic MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh
Regression analysis
Regressionsanalyse (DE-588)4129903-6 gnd
Lineare Regression (DE-588)4167709-2 gnd
topic_facet MATHEMATICS / Probability & Statistics / Regression Analysis
Regression analysis
Regressionsanalyse
Lineare Regression
Lehrbuch
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216
work_keys_str_mv AT yanxin linearregressionanalysistheoryandcomputing
AT suxiaogang linearregressionanalysistheoryandcomputing
AT worldscientificfirm linearregressionanalysistheoryandcomputing