Towards a mathematical theory of complex biological systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
©2011
|
Schriftenreihe: | Series in mathematical biology and medicine
v. 11 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043127110 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 9789814340533 |9 978-981-4340-53-3 | ||
020 | |a 9789814340540 |c electronic bk. |9 978-981-4340-54-0 | ||
020 | |a 9814340537 |9 981-4340-53-7 | ||
020 | |a 9814340545 |c electronic bk. |9 981-4340-54-5 | ||
035 | |a (OCoLC)733048104 | ||
035 | |a (DE-599)BVBBV043127110 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 570.15/118 |2 22 | |
100 | 1 | |a Bianca, C., (Carlo) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Towards a mathematical theory of complex biological systems |c C. Bianca, N. Bellomo |
264 | 1 | |a Singapore |b World Scientific |c ©2011 | |
300 | |a 1 Online-Ressource (xvii, 208 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Series in mathematical biology and medicine |v v. 11 | |
500 | |a Includes bibliographical references and index | ||
500 | |a 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- | ||
500 | |a - 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- | ||
500 | |a - 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure | ||
500 | |a This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling | ||
650 | 4 | |a Natural history | |
650 | 4 | |a Science | |
650 | 7 | |a NATURE / Reference |2 bisacsh | |
650 | 7 | |a SCIENCE / Life Sciences / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Life Sciences / Biology |2 bisacsh | |
650 | 7 | |a Biological systems / Mathematical models |2 fast | |
650 | 7 | |a Biomathematics |2 fast | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Biomathematics | |
650 | 4 | |a Biological systems |x Mathematical models | |
650 | 0 | 7 | |a Biologisches System |0 (DE-588)4122930-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Biologisches System |0 (DE-588)4122930-7 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bellomo, N. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028551301 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175562560765952 |
---|---|
any_adam_object | |
author | Bianca, C., (Carlo) |
author_facet | Bianca, C., (Carlo) |
author_role | aut |
author_sort | Bianca, C., (Carlo) |
author_variant | c c b cc ccb |
building | Verbundindex |
bvnumber | BV043127110 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)733048104 (DE-599)BVBBV043127110 |
dewey-full | 570.15/118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.15/118 |
dewey-search | 570.15/118 |
dewey-sort | 3570.15 3118 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05657nmm a2200637zcb4500</leader><controlfield tag="001">BV043127110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814340533</subfield><subfield code="9">978-981-4340-53-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814340540</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4340-54-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814340537</subfield><subfield code="9">981-4340-53-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814340545</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4340-54-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)733048104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043127110</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.15/118</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bianca, C., (Carlo)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards a mathematical theory of complex biological systems</subfield><subfield code="c">C. Bianca, N. Bellomo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in mathematical biology and medicine</subfield><subfield code="v">v. 11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / Biology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological systems / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological systems</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellomo, N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028551301</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043127110 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:16Z |
institution | BVB |
isbn | 9789814340533 9789814340540 9814340537 9814340545 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028551301 |
oclc_num | 733048104 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvii, 208 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | World Scientific |
record_format | marc |
series2 | Series in mathematical biology and medicine |
spelling | Bianca, C., (Carlo) Verfasser aut Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo Singapore World Scientific ©2011 1 Online-Ressource (xvii, 208 pages) txt rdacontent c rdamedia cr rdacarrier Series in mathematical biology and medicine v. 11 Includes bibliographical references and index 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- - 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- - 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling Natural history Science NATURE / Reference bisacsh SCIENCE / Life Sciences / General bisacsh SCIENCE / Life Sciences / Biology bisacsh Biological systems / Mathematical models fast Biomathematics fast Mathematisches Modell Naturwissenschaft Biomathematics Biological systems Mathematical models Biologisches System (DE-588)4122930-7 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Biologisches System (DE-588)4122930-7 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Bellomo, N. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bianca, C., (Carlo) Towards a mathematical theory of complex biological systems Natural history Science NATURE / Reference bisacsh SCIENCE / Life Sciences / General bisacsh SCIENCE / Life Sciences / Biology bisacsh Biological systems / Mathematical models fast Biomathematics fast Mathematisches Modell Naturwissenschaft Biomathematics Biological systems Mathematical models Biologisches System (DE-588)4122930-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4122930-7 (DE-588)4114528-8 |
title | Towards a mathematical theory of complex biological systems |
title_auth | Towards a mathematical theory of complex biological systems |
title_exact_search | Towards a mathematical theory of complex biological systems |
title_full | Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo |
title_fullStr | Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo |
title_full_unstemmed | Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo |
title_short | Towards a mathematical theory of complex biological systems |
title_sort | towards a mathematical theory of complex biological systems |
topic | Natural history Science NATURE / Reference bisacsh SCIENCE / Life Sciences / General bisacsh SCIENCE / Life Sciences / Biology bisacsh Biological systems / Mathematical models fast Biomathematics fast Mathematisches Modell Naturwissenschaft Biomathematics Biological systems Mathematical models Biologisches System (DE-588)4122930-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Natural history Science NATURE / Reference SCIENCE / Life Sciences / General SCIENCE / Life Sciences / Biology Biological systems / Mathematical models Biomathematics Mathematisches Modell Naturwissenschaft Biological systems Mathematical models Biologisches System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 |
work_keys_str_mv | AT biancaccarlo towardsamathematicaltheoryofcomplexbiologicalsystems AT bellomon towardsamathematicaltheoryofcomplexbiologicalsystems |