Towards a mathematical theory of complex biological systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bianca, C., (Carlo) (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific ©2011
Schriftenreihe:Series in mathematical biology and medicine v. 11
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV043127110
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2011 |||| o||u| ||||||eng d
020 |a 9789814340533  |9 978-981-4340-53-3 
020 |a 9789814340540  |c electronic bk.  |9 978-981-4340-54-0 
020 |a 9814340537  |9 981-4340-53-7 
020 |a 9814340545  |c electronic bk.  |9 981-4340-54-5 
035 |a (OCoLC)733048104 
035 |a (DE-599)BVBBV043127110 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 570.15/118  |2 22 
100 1 |a Bianca, C., (Carlo)  |e Verfasser  |4 aut 
245 1 0 |a Towards a mathematical theory of complex biological systems  |c C. Bianca, N. Bellomo 
264 1 |a Singapore  |b World Scientific  |c ©2011 
300 |a 1 Online-Ressource (xvii, 208 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Series in mathematical biology and medicine  |v v. 11 
500 |a Includes bibliographical references and index 
500 |a 1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach --  
500 |a  - 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives --  
500 |a  - 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure 
500 |a This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling 
650 4 |a Natural history 
650 4 |a Science 
650 7 |a NATURE / Reference  |2 bisacsh 
650 7 |a SCIENCE / Life Sciences / General  |2 bisacsh 
650 7 |a SCIENCE / Life Sciences / Biology  |2 bisacsh 
650 7 |a Biological systems / Mathematical models  |2 fast 
650 7 |a Biomathematics  |2 fast 
650 4 |a Mathematisches Modell 
650 4 |a Naturwissenschaft 
650 4 |a Biomathematics 
650 4 |a Biological systems  |x Mathematical models 
650 0 7 |a Biologisches System  |0 (DE-588)4122930-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematisches Modell  |0 (DE-588)4114528-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Biologisches System  |0 (DE-588)4122930-7  |D s 
689 0 1 |a Mathematisches Modell  |0 (DE-588)4114528-8  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Bellomo, N.  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
999 |a oai:aleph.bib-bvb.de:BVB01-028551301 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224  |l FAW01  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224  |l FAW02  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1804175562560765952
any_adam_object
author Bianca, C., (Carlo)
author_facet Bianca, C., (Carlo)
author_role aut
author_sort Bianca, C., (Carlo)
author_variant c c b cc ccb
building Verbundindex
bvnumber BV043127110
collection ZDB-4-EBA
ctrlnum (OCoLC)733048104
(DE-599)BVBBV043127110
dewey-full 570.15/118
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 570 - Biology
dewey-raw 570.15/118
dewey-search 570.15/118
dewey-sort 3570.15 3118
dewey-tens 570 - Biology
discipline Biologie
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05657nmm a2200637zcb4500</leader><controlfield tag="001">BV043127110</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814340533</subfield><subfield code="9">978-981-4340-53-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814340540</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4340-54-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814340537</subfield><subfield code="9">981-4340-53-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814340545</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4340-54-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)733048104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043127110</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.15/118</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bianca, C., (Carlo)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards a mathematical theory of complex biological systems</subfield><subfield code="c">C. Bianca, N. Bellomo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in mathematical biology and medicine</subfield><subfield code="v">v. 11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural history</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NATURE / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / Biology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biological systems / Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological systems</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellomo, N.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=373224</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028551301</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=373224</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=373224</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043127110
illustrated Not Illustrated
indexdate 2024-07-10T07:18:16Z
institution BVB
isbn 9789814340533
9789814340540
9814340537
9814340545
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028551301
oclc_num 733048104
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xvii, 208 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher World Scientific
record_format marc
series2 Series in mathematical biology and medicine
spelling Bianca, C., (Carlo) Verfasser aut
Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo
Singapore World Scientific ©2011
1 Online-Ressource (xvii, 208 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Series in mathematical biology and medicine v. 11
Includes bibliographical references and index
1. Looking for a mathematical theory of biological systems. 1.1. Introduction. 1.2. On the concept of mathematical theory. 1.3. Plan of the monograph -- 2. On the complexity of biological systems. 2.1. Ten common features of living systems. 2.2. Some introductory concepts of systems biology. 2.3. Reducing complexity -- 3. The immune system : A phenomenological overview. 3.1. Introduction. 3.2. Bacteria and viruses. 3.3. The immune system components. 3.4. The immune response. 3.5. Immune system diseases. 3.6. Critical analysis -- 4. Wound healing process and organ repair. 4.1. Introduction. 4.2. Genes and mutations. 4.3. The phases of wound healing. 4.4. The fibrosis disease. 4.5. Critical analysis -- 5. From levels of biological organization to system biology. 5.1. Introduction. 5.2. From scaling to mathematical structures. 5.3. Guidelines to the modeling approach --
- 6. Mathematical tools and structures. 6.1. Introduction. 6.2. Mathematical frameworks of the kinetic theory of active particles. 6.3. Guidelines towards modeling at the molecular and cellular scales. 6.4. Additional analysis looking at the immune competition. 6.5. Critical analysis -- 7. Multiscale modeling : Linking molecular, cellular, and tissues scales. 7.1. Introduction. 7.2. On the phenomenological derivation of macroscopic tissue models. 7.3. Cellular-tissue scale modeling of closed systems. 7.4. Cellular-tissue scale modeling of open systems. 7.5. On the molecular-cellular scale modeling. 7.6. Critical analysis -- 8. A model for Malign Keloid Formation and immune system competition. 8.1. Introduction. 8.2. The mathematical model. 8.3. Simulations and emerging behaviors. 8.4. Critical analysis and perspectives --
- 9. Macroscopic models of chemotaxis by KTAP asymptotic methods. 9.1. Introduction. 9.2. Linear turning kernels : Relaxation models. 9.3. Cellular-tissue scale models of chemotaxis. 9.4. Critical analysis -- 10. Looking ahead. 10.1. Introduction. 10.2. Some challenges for applied mathematicians and biologists. 10.3. How far is the mathematical theory for biological systems. 10.4. Closure
This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, cellular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling
Natural history
Science
NATURE / Reference bisacsh
SCIENCE / Life Sciences / General bisacsh
SCIENCE / Life Sciences / Biology bisacsh
Biological systems / Mathematical models fast
Biomathematics fast
Mathematisches Modell
Naturwissenschaft
Biomathematics
Biological systems Mathematical models
Biologisches System (DE-588)4122930-7 gnd rswk-swf
Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf
Biologisches System (DE-588)4122930-7 s
Mathematisches Modell (DE-588)4114528-8 s
1\p DE-604
Bellomo, N. Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Bianca, C., (Carlo)
Towards a mathematical theory of complex biological systems
Natural history
Science
NATURE / Reference bisacsh
SCIENCE / Life Sciences / General bisacsh
SCIENCE / Life Sciences / Biology bisacsh
Biological systems / Mathematical models fast
Biomathematics fast
Mathematisches Modell
Naturwissenschaft
Biomathematics
Biological systems Mathematical models
Biologisches System (DE-588)4122930-7 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
subject_GND (DE-588)4122930-7
(DE-588)4114528-8
title Towards a mathematical theory of complex biological systems
title_auth Towards a mathematical theory of complex biological systems
title_exact_search Towards a mathematical theory of complex biological systems
title_full Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo
title_fullStr Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo
title_full_unstemmed Towards a mathematical theory of complex biological systems C. Bianca, N. Bellomo
title_short Towards a mathematical theory of complex biological systems
title_sort towards a mathematical theory of complex biological systems
topic Natural history
Science
NATURE / Reference bisacsh
SCIENCE / Life Sciences / General bisacsh
SCIENCE / Life Sciences / Biology bisacsh
Biological systems / Mathematical models fast
Biomathematics fast
Mathematisches Modell
Naturwissenschaft
Biomathematics
Biological systems Mathematical models
Biologisches System (DE-588)4122930-7 gnd
Mathematisches Modell (DE-588)4114528-8 gnd
topic_facet Natural history
Science
NATURE / Reference
SCIENCE / Life Sciences / General
SCIENCE / Life Sciences / Biology
Biological systems / Mathematical models
Biomathematics
Mathematisches Modell
Naturwissenschaft
Biological systems Mathematical models
Biologisches System
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=373224
work_keys_str_mv AT biancaccarlo towardsamathematicaltheoryofcomplexbiologicalsystems
AT bellomon towardsamathematicaltheoryofcomplexbiologicalsystems